THERMODYNAMICS AND ENERGY

- Thermodynamics: The science of energy.
- Energy: The ability to cause changes.
- The name thermodynamics stems from the Greek words therme (heat) and dynamis (power).
- Conservation of energy principle: During an interaction, energy can change from one form to another but the total amount of energy remains constant.
- Energy cannot be created or destroyed.
- The first law of thermodynamics: An expression of the conservation of energy principle.
- The first law asserts that energy is a thermodynamic property.

Energy cannot be created or destroyed; it can only change forms (the first law).

- The second law of thermodynamics: It asserts that energy has quality as well as quantity, and actual processes occur in the direction of decreasing quality of energy.
- Classical thermodynamics: A macroscopic approach to the study of thermodynamics that does not require a knowledge of the behavior of individual particles.
- It provides a direct and easy way to the solution of engineering problems and it is used in this text.
- Statistical thermodynamics: A microscopic approach, based on the average behavior of large groups of individual particles.
- It is used in this text only in the supporting role.

Conservation of energy principle for the human body.

Application Areas of Thermodynamics

SYSTEMS AND CONTROL VOLUMES

- System: A quantity of matter or a region in space chosen for study.
- Surroundings: The mass or region outside the system
- Boundary: The real or imaginary surface that separates the system from its surroundings.
- The boundary of a system can be fixed or movable.
- Systems may be considered to be closed or open.

- Closed system
(Control mass): A fixed amount of mass, and no mass can cross its boundary.

- Open system (control volume): A properly selected region in space.
- It usually encloses a device that involves mass flow such as a compressor, turbine, or nozzle.
- Both mass and energy can cross the boundary of a control volume.
- Control surface: The boundaries of a control volume. It can be real or imaginary.

(b) A control volume with fixed and moving boundaries

PROPERTIES OF A SYSTEM

- Property: Any characteristic of a system.
- Some familiar properties are pressure P, temperature T, volume V, and mass m.
- Properties are considered to be either intensive or extensive.
- Intensive properties: Those that are independent of the mass of a system, such as temperature, pressure, and density.
- Extensive properties: Those whose values depend on the sizeor extent-of the system.
- Specific properties: Extensive properties per unit mass.

Criterion to differentiate intensive and extensive properties.

Continumm

- Matter is made up of atoms that are widely spaced in the gas phase. Yet it is very convenient to disregard the atomic nature of a substance and view it as a continuous, homogeneous matter with no holes, that is, a continuum.
- The continuum idealization allows us to treat properties as point functions and to assume the properties vary continually in space with no jump discontinuities.
- This idealization is valid as long as the size of the system we deal with is large relative to the space between the molecules.
- This is the case in practically all problems.
- In this text we will limit our

Despite the large gaps between molecules, a substance can be treated as a continuum because of the very large number of molecules even in an extremely small volume. consideration to substances that can be modeled as a continuum.

DENSITY AND SPECIFIC GRAVITY

Density
$\rho=\frac{m}{V}$
Specific volume
$v=\frac{V}{m}=\frac{1}{\rho}$

$V=12 \mathrm{~m}^{3}$ $m=3 \mathrm{~kg}$	$\gamma_{s}=\rho g \quad\left(\mathrm{~N} / \mathrm{m}^{3}\right)$
$\rho=0.25 \mathrm{~kg} / \mathrm{m}^{3}$	Density is mass per unit volume; specific volume is volume per
$V=\frac{1}{\rho}=4 \mathrm{~m}^{3} / \mathrm{kg}$	unit mass.

Specific weight: The weight of a unit volume of a substance.

Density is mass
per unit volume;
specific volume
is volume per
unit mass.
$\left(\mathrm{N} / \mathrm{m}^{3}\right)$

Specific gravity: The ratio of the density of a substance to the density of some standard substance at a specified

$$
\mathrm{SG}=\frac{\rho}{\rho_{\mathrm{H}_{2} \mathrm{O}}}
$$ temperature (usually water at $4^{\circ} \mathrm{C}$).

TABLE 1-3

Specific gravities of some substances at $0^{\circ} \mathrm{C}$

Substance	SG
Water	1.0
Blood	1.05
Seawater	1.025
Gasoline	0.7
Ethyl alcohol	0.79
Mercury	13.6
Wood	$0.3-0.9$
Gold	19.2
Bones	$1.7-2.0$
Ice	0.92
Air (at 1 atm)	0.0013

STATE AND EQUII

- Thermodynamics deals with equilibrium states.
- Equilibrium: A state of balance.
- In an equilibrium state there are no unbalanced potentials (or driving forces) within the system.
- Thermal equilibrium: If the temperature is the same throughout the entire system.
- Mechanical equilibrium: If there is no change in pressure at any point of the system with time.
- Phase equilibrium: If a system involves two phases and when the mass of each phase reaches an equilibrium level and stays there.
- Chemical equilibrium: If the chemical composition of a system does not change with time, that is, no chemical reactions occur.

(a) State 1

$$
\begin{gathered}
m=2 \mathrm{~kg} \\
T_{2}=20^{\circ} \mathrm{C} \\
V_{2}=2.5 \mathrm{~m}^{3}
\end{gathered}
$$

A system at two different states.

(a) Before

A closed system reaching thermal equilibrium.
equmionurn.

(b) After

PROCESSES AND CYCLES

Process: Any change that a system undergoes from one equilibrium state to another.
Path: The series of states through which a system passes during a process. To describe a process completely, one should specify the initial and final states, as well as the path it follows, and the interactions with the surroundings.
Quasistatic or quasi-equilibrium process: When a process proceeds in such a manner that the system remains infinitesimally close to an equilibrium state at all times.

- Process diagrams plotted by employing thermodynamic properties as coordinates are very useful in visualizing the processes.
- Some common properties that are used as coordinates are temperature T, pressure P, and volume V (or specific volume v).
- The prefix iso- is often used to designate a process for which a particularproperty remains constant.
- Isothermal process: A process during which the temperature T remains constant.
- Isobaric process: A process during which the pressure P remains constant.
- Isochoric (or isometric) process: A process during which the specific volume v remains constant.
- Cycle: A process during which the initial and final states are identical.

The $P-V$ diagram of a compression process.

The Steady-Flow Process

- The term steady implies no change with time. The opposite of steady is unsteady, or transient.
- A large number of engineering devices operate for long periods of time under the same conditions, and they are classified as steady-flow devices.
- Steady-flow process: A process during which a fluid flows through a control volume steadily.
- Steady-flow conditions can be closely approximated by devices that are intended for continuous operation such as turbines, pumps, boilers, condensers, and heat exchangers or power plants or refrigeration systems.

Time: 1 PM
During a steadyflow process, fluid properties within the control volume may change with position but not with time.

Time: 3 PM

Under steady-flow conditions, the mass and energy contents of a control volume remain constant.

TEMPERATURE AND THE ZEROTH LAW OF THERMODYNAMICS

- The zeroth law of thermodynamics: If two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other.
- By replacing the third body with a thermometer, the zeroth law can be restated as two bodies are in thermal equilibrium if both have the same temperature reading even if they are not in contact.

Two bodies reaching thermal equilibrium after being brought into contact in an isolated enclosure.

Temperature Scales

- All temperature scales are based on some easily reproducible states such as the freezing and boiling points of water: the ice point and the steam point.
- Ice point: A mixture of ice and water that is in equilibrium with air saturated with vapor at 1 atm pressure $\left(0^{\circ} \mathrm{C}\right.$ or $32^{\circ} \mathrm{F}$).
- Steam point: A mixture of liquid water and water vapor (with no air) in equilibrium at 1 atm pressure $\left(100^{\circ} \mathrm{C}\right.$ or $212^{\circ} \mathrm{F}$).
- Celsius scale: in SI unit system
- Fahrenheit scale: in English unit system
- Thermodynamic temperature scale: A temperature scale that is independent of the properties of any substance.
- Kelvin scale (SI) Rankine scale (E)
- A temperature scale nearly identical to the Kelvin scale is the ideal-gas temperature scale. The temperatures on this scale are measured using a constant-volume gas thermometer.
P versus T plots of the experimental data obtained from a constantvolume gas
using four Extrapolation
different gases at
different (but
low) pressures. $T\left({ }^{\circ} \mathrm{C}\right)$
Absolute
vacuum
$\mathrm{V}=$ constant
A constant-volume gas thermometer would read $273.15^{\circ} \mathrm{C}$ at absolute zero pressure.

$$
\begin{aligned}
& T(\mathrm{~K})=T\left({ }^{\circ} \mathrm{C}\right)+273.15 \\
& T(\mathrm{R})=T\left({ }^{\circ} \mathrm{F}\right)+459.67 \\
& T(\mathrm{R})=1.8 T(\mathrm{~K}) \\
& T\left({ }^{\circ} \mathrm{F}\right)=1.8 T\left({ }^{\circ} \mathrm{C}\right)+32 \\
& \Delta T(\mathrm{~K})=\Delta T\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Comparison of temperature scales.

$$
\Delta T(\mathrm{R})=\Delta T\left({ }^{\circ} \mathrm{F}\right)
$$

- The reference temperature in the original Kelvin scale was the ice point, 273.15 K , which is the temperature at which water freezes (or ice melts).
- The reference point was changed to a much more precisely reproducible point, the triple point of water (the state at which all three phases of water coexist in equilibrium), which is assigned the value 273.16 K .

PRESSURE

Pressure: A normal force exerted by a fluid per unit area

$$
1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}
$$

$$
1 \mathrm{bar}=10^{5} \mathrm{~Pa}=0.1 \mathrm{MPa}=100 \mathrm{kPa}
$$

$1 \mathrm{~atm}=101,325 \mathrm{~Pa}=101.325 \mathrm{kPa}=1.01325$ bars
$1 \mathrm{kgf} / \mathrm{cm}^{2}=9.807 \mathrm{~N} / \mathrm{cm}^{2}=9.807 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}=9.807 \times 10^{4} \mathrm{~Pa}$

The normal stress (or "pressure") on the feet of a chubby person is much greater than on the feet of a slim person.

Some basic
pressure gages.

- Absolute pressure: The actual pressure at a given position. It is measured relative to absolute vacuum (i.e., absolute zero pressure).
- Gage pressure: The difference between the absolute pressure and the local atmospheric pressure. Most pressure-measuring devices are calibrated to read zero in the atmosphere, and so they indicate gage pressure.
- Vacuum pressures: Pressures below atmospheric pressure.

Summary

- Thermodynamics and energy
- Application areas of thermodynamics
- Importance of dimensions and units
- Some SI and English units, Dimensional homogeneity, Unity conversion ratios
- Systems and control volumes
- Properties of a system
- Density and specific gravity
- State and equilibrium
- The state postulate
- Processes and cycles
- The steady-flow process
- Temperature and the zeroth law of thermodynamics
- Temperature scales
- Pressure
- Variation of pressure with depth
- The manometer and the atmospheric pressure
- Problem solving technique

OUESTION BANK

THERMODYNAMICS

1) a) Define a thermodynamic system. Differentiate between open system, closed system and an isolated system.
b) Determine the work done by the air which enters into an evacuated vessel from atmosphere when the valve is opened. The atmospheric pressure is 1.013 bar and $1.5 \mathrm{~m}^{3}$ of air at atmospheric condition enters into the vessel.
[6+8] S
2) a) Explain the following terms:
i) state ii) Process
iii) Cycle
b) A fluid at a pressure of 3 bar, and with specific volume of $0.18 \mathrm{~m}^{3} / \mathrm{kg}$, contained in a cylinder behind a piston expands reversibly to a pressure of 0.6 bar according to a law $\mathrm{p}=$ $\mathrm{C} / \mathrm{v}^{2}$ where C is a constant. Calculate the work done by the fluid on the piston. [6+8] \mathbf{S}
3) a) How does the homogeneous system differ from a heterogeneous system?
b) 1 kg of a fluid is compressed reversibly according to a law $\mathrm{pv}=0.25$ where p is in bar and v is in $\mathrm{m}^{3} / \mathrm{kg}$. The final volume is $1 / 4$ of the initial volume. Calculate the work done on the fluid also sketch the process on a p-v diagram. [6+8] S
4) a) What do you understand by path function and point function? What are the exact and inexact differentials?
b) A mass of 1.5 kg of air is compressed in a quasi-static process from 0.1 MPa to 0.7 MPa for which $\mathrm{pv}=$ constant. The initial density of air is $1.16 \mathrm{~kg} / \mathrm{m}^{3}$. Find the work done by the piston to compress the air.
5) a) Show that work is a path function and not a property.
b) A mass of gas compressed in a quasi-static process from $80 \mathrm{KPa}, 0.1 \mathrm{~m}^{3}$ to $0.4 \mathrm{MPa}, 0.03 \mathrm{~m}^{3}$. Assuming that the pressure and volume are related by pv^{n} = constant, find the work done by the gas system.
6) a) Define the term 'heat' in detail. Justify the statement that work and heat are not properties.
b) Calculate the non-flow work done for a gas which expands from initial pressure 5 bar and volume $4 \mathrm{~m}^{3}$ to final volume $20 \mathrm{~m}^{3}$ under the following reversible processes. Show the process on $\mathrm{P}-\mathrm{V}$ diagram.
a) $\mathrm{P}=\mathrm{C}$
b) $\mathrm{V}=\mathrm{C} \quad \mathrm{PV}=\mathrm{C}$
d) $\mathrm{PV}^{\gamma}=\mathrm{C}$ where $\gamma=1.4$ e) $\mathrm{PV}^{\mathrm{n}}=\mathrm{C}$
$[6+8] \mathbf{S}$
7) A piston-cylinder arrangement is containing a fluid at 10 bar, the initial volume being $0.05 \mathrm{~m}^{3}$. Find the work done by the fluid when it expands reversible for the following cases
a) at constant pressure to a final volume of $0.2 \mathrm{~m}^{3}$
b) according to the linear law to a final volume of $0.2 \mathrm{~m}^{3}$ and a final pressure of 2 bar.
c) according to law $\mathrm{PV}=$ constant to a final volume of $0.06 \mathrm{~m}^{3}$.
d) according to law $\mathrm{PV}^{3}=$ constant to a final volume of $0.06 \mathrm{~m}^{3}$.
e) according to law $=\left(A / V^{3}\right)-(B / V)$ to final volume of $0.1 \mathrm{~m}^{3}$ and a final pressure of 1 bar where A and B are constants.
8) Calculate the non-flow work done for a gas which expands from initial pressure 5 bar and volume $4 \mathrm{~m}^{3}$ to final volume $20 \mathrm{~m}^{3}$ under the following reversible processes. Show the process on $\mathrm{P}-\mathrm{V}$ diagram.
a) $\mathrm{P}=\mathrm{c}$
b) $v=c$
c) $p v=c$
d) $\mathrm{pv}^{\gamma}=\mathrm{c}$ where $\gamma=1.4$
e) $p v^{n}=c$

Where $n=1.25$.
[14] M
9) a) Differentiate between the cyclic process and non-cyclic process.
b) Prove that heat and work are the path functions.
10) a) What is a quasi-static process? What is its characteristic feature?
b) An engine cylinder has a piston of area $0.12 \mathrm{~m}^{3}$ and contains gas at a pressure of 1.5 MPa . The gas expands according to a process which is represented by a straight line on a pressure-volume diagram. The final pressure is 0.15 MPa . Calculate the work done by the gas on the piston if the stroke is 0.3 m.
11) A fluid is contained in a cylinder by a spring loaded, frictionless piston so that the pressure in the fluid is linear function of volume $(p=a+b v)$. The internal energy of the fluid in KJ is given by the expression $u=32+3 p v$, where p is in KPa and V is in m^{3}. The initial and final pressures are 150 KPa and 350 KPa and the corresponding volumes are $0.02 \mathrm{~m}^{3}$ and $0.05 \mathrm{~m}^{3}$. Make calculations for the direction and magnitude of work and heat interactions.
12) a) Explain the terms state, path, process and cyclic process.
b) Discuss the macroscopic and microscopic point of view of thermodynamics. [7+7] \mathbf{S}
13) a) Explain thermodynamic system, surroundings and universe, illustrate the same with examples.
b) Distinguish between closed system, open system and isolated system with suitable examples.
[7+7] S
14) a) Explain the control volume and its significance
b) if a gas of volume $6000 \mathrm{~cm}^{3}$ and at a pressure of 100 KPa , is compressed quasistatically to $\mathrm{PV}^{2}=$ constant until the volume becomes $2000 \mathrm{~cm}^{3}$. Calculate the final pressure and the work transfer.
[4+10] S
15) a) What are different forms of work energy. Explain each of them briefly.
b) Why does free expansion have zero work transfer.
16) a) Explain the terms 'cyclic' and 'quasi static' process.
b) A piston-cylinder engine contains a fluid at 12 bar pressure. The cylinder volume is $0.03 \mathrm{~m}^{3}$. Calculate the work done by the fluid when it expands reversibly as
a) according to a law $\mathrm{PV}=\mathrm{C}$ to a final volume of $0.15 \mathrm{~m}^{3}$.
b) according to law $\mathrm{P}=\mathrm{A} / \mathrm{V}^{3}-\mathrm{B} / \mathrm{V}$ to a final of $0.1 \mathrm{~m}^{3}$ and a final pressure of 1.5
bar where A and B are constants.
17) a) Write the difference between system and control volume.
b) A gas undergoes a reversible non-flow process according to the relation $\mathrm{P}=$ $(-3 \mathrm{~V}+15)$ where V is the volume in m^{3} and P is the pressure in bar. Determine the work done when the volume changes from 3 to $6 \mathrm{~m}^{3}$.
18) A gas expands according to the equation $\mathrm{PV}=100$, where P is the pressure in KPa and V is the specific volume in $\mathrm{m}^{3} / \mathrm{kg}$. The initial pressure of the gas is 1000 KPa and the final pressure is 500 KPa . The gas is then heated at constant volume back to its original pressure of 1000 KPa . Determine the work of combined process. Also sketch the process on $\mathrm{P}-\mathrm{V}$ coordinates.
[14] D
19) a) What is thermodynamic system? What is the difference between a closed system and an open system? Give few examples for closed and open systems. b) An engine cylinder has a piston of area $0.12 \mathrm{~m}^{2}$ and contains gas at a pressure of 1.5 MPa . The gas expands according to a process which is represented by a straight line of a pressure-volume diagram. The final pressure is 0.15 MPa. Calculate the work done by the gas on the piston if the stroke is $0.03 \mathrm{~m} .[7+7] \mathbf{M}$
20) A fluid is contained in a cylinder by a spring loaded, frictionless piston so that the pressure in the fluid is linear function of volume ($p=a+b v$). The internal energy of the fluid is KJ is given by the expression $u=32+3 p v$, where p is in KPa and V is in m^{3}. The initial and final pressures are 150 KPa and 350 KPa and the corresponding volumes are $0.02 \mathrm{~m}^{3}$ and $0.05 \mathrm{~m}^{3}$. Make calculations for the direction and magnitude of work and heat interaction.
[14] D
21) A gas undergoes two processes that are in series. The first process is an expansion that is carried out according to the law $\mathrm{PV}=$ constant and the second process is a constant pressure process that returns the gas to the initial volume of the first process. The start of the first process is at 400 KPa and $0.025 \mathrm{~m}^{3}$ with the expansion to 200 KPa . Sketch the process on a P-V diagram, and determine the work of the combined process.
22) A fluid contained in a horizontal cylinder fitted with frictionless leak proof piston, is continuously agitated by means of a stirrer passing through the cylinder cover. The cylinder diameter is 0.4 m . During the stirring process lasting 10 minutes, the piston slowly moves out a distance of 0.485 m against the atmosphere. The net work done by the fluid during the process is 2 KJ . The speed of the electric motor droving the stirrer is 840 rpm . Determine torque in the shaft and power output of the motor.
23) a) Show that work is a path function, and not a property.
b) A mass of gas is compressed in quasi-static process from $80 \mathrm{KPa}, 0.1 \mathrm{~m}^{3}$ to $0.4 \mathrm{MPa}, 0.03 \mathrm{~m}^{3}$. Assuming that the pressure and volume are related by $\mathrm{PV}^{\mathrm{n}}=$ constant, find the work done by the gas system.
24) a) Define the term 'heat' in detail. Justify the statement that work and heat are not properties.
b) A pressure gauge fixed in a boiler reads $1200 \mathrm{KN} / \mathrm{m}^{2}$. The barometer reads
atmospheric pressure as 735.5 mm of Hg . Determine the corresponding absolute pressure.
25) a) What are positive and negative work interactions.
b) A forced fan supplies air to the furnace of a boiler at a head of 40 mm of water column. Determine the absolute pressure of air supply if the barometric reading is 760 mm of Hg .
26) a) Distinguish clearly between the following, giving examples wherever necessary
i) Closed system and open system
ii) point function and path functions
b)A vacuum gauge fixed in steam condenser reads 71 cm of Hg . The barometric reading is 76 cm of Hg . Calculate the absolute pressure in the condenser. [7+7] M
27) a) Explain clearly what thermodynamic equilibrium is?
b) The pressure of steam generated in a boiler as recorded by the Bourdon pressure guage was 9.2 bar. Calculate the absolute pressure of steam if the barometer reads 774 mm of Hg .
28) a) Discuss the microscopic and macroscopic point of view of thermodynamics.
b) A non flow quasi-static (reversible) process occurs for which $p=-3 v+16$ bar, where V is in $\mathrm{m}^{3 .}$. What is the work done when V changes from 2 to $6 \mathrm{~m}^{3}$? $\quad[6+8] \mathbf{S}$
29) a) Define property and classify it with proper examples.
b) A non-flow reversible process can be written down by and equation $p=\left(\mathrm{V}^{2}+\right.$ $8 / \mathrm{V}$) bar. Determine the work done if volume changes from 1 to $3 \mathrm{~m}^{3}$.
$[6+8] \mathbf{S}$
30) a) Justify the statement that work and heat are not properties.
b) Write short notes on
a) System b) properties c) path function and point function
d) work and heat
$[6+8] \mathbf{S}$
31) a) What do you understand by path function and point function.
b) State whether the following quantities are point functions or path functions?

Explain briefly (i) $\int p d v$
(ii) $\int v d p$ (iii) $\int(p d v+v d p)$ (iv) $\int d v$.
$[6+8] \mathbf{M}$
32. a) Justify the statement that work and heat are not the properties.
b) A quantity of air having a volume of $0.03 \mathrm{~m}^{3}$ at a temperature of $200^{\circ} \mathrm{C}$ and pressure of $150 \mathrm{~N} / \mathrm{cm}^{2}$ is expanded at constant pressure to $0.06 \mathrm{~m}^{3}$, it is then expanded adiabatically to $0.12 \mathrm{~m}^{3}$. Find (i) Temperature and pressure at the end of the adiabatic process (ii) work done during each stage assuming $\gamma=1.41$.
[4+10] M
33. a) Define the term 'heat' in detail. Justify the statement that work and heat are not properties
b) The properties of a closed system change following the relation between pressure and volume as $\mathrm{PV}=3$ where P is in bar, V is in m^{3}. Calculate the work done when the pressure increases from1.5 bar to 7.5 bar.
34. a) Explain clearly what thermodynamic equilibrium is?
b) A fluid at a pressure of 3 bar, and with specific volume of $0.18 \mathrm{~m}^{3} / \mathrm{kg}$, contained in a cylinder behind a piston expands reversibly to a pressure of 0.6 bar according to a law P $=\mathrm{C} / \mathrm{V}^{2}$. Calculate the work done by the fluid on the piston.

UNIT - 2

1. A new temperature scale in ${ }^{0} \mathrm{~N}$ is to be defined. The boiling and freezing points on this scale are $400^{\circ} \mathrm{N}$ and $100^{\circ} \mathrm{N}$ respectively.
a) Correlate this with Centigrade and Fahrenheit scale
b) What will be the reading on the new scale corresponding to $60^{\circ} \mathrm{C}$
2. A fluid is confined in a cylinder by a spring loaded, frictionless piston so tha the pressure in the fluid is a linear function of the volume $(P=a+b V)$. The internal energy in the fluid is given by the following equation.

$$
\mathrm{U}=34+3.15 \mathrm{PV}
$$

Where U is in Kj , P in KPa and V in m^{3}. If the fluid changes from an initial state of 170 KPa , $0.03 \mathrm{~m}^{3}$ to a final state of $400 \mathrm{KPa}, 0.06 \mathrm{~m}^{3}$ with no work other than that done on the piston, find the direction and magnitude of the work and heat transfer.
3. A piston and cylinder machine contains a fluid system which passes through a complete cycle of four processes. During a cycle, the sum of all heat transfers is -170 Kj . The system completes 100 cycles per minute. Complete the following table showing the method for each item, and compute the new rate of work output in KW.

Process	$\mathrm{Q}(\mathrm{KJ} / \mathrm{min})$	$\mathrm{W}(\mathrm{KJ} / \mathrm{min})$	$\Delta \mathrm{E}(\mathrm{KJ} / \mathrm{min})$
a-b	0	2,170	--
b-c	21,000	0	--
c-d	$-2,100$	--	$-36,600$
d-a	--	--	--

4. A system receives 200 Kj of work at constant volume process and rejects 220 Kj of heat at constant pressure and 40 Kj of work is done on the system. The system is brought to its original state by an adiabatic process. Calculate the adiabatic work. If the initial internal energy is 240 Kj , then calculate the value of internal energy at all points.
5. In a vessel 10 kg of oxygen is heated in a reversible, now-flow, constant volume process so that the pressure of oxygen is increase two ties that of the initial vale. The initial temperature is $20^{0} \mathrm{C}$. Calculate
a. The final temperature
b. The change in internal energy
c. The change in enthalpy and
d. The heat transfer.

Take $\mathrm{R}=0.259 \mathrm{Kj} / \mathrm{Kg} \mathrm{K}$ and $\mathrm{C}_{\mathrm{v}}=0.652 \mathrm{Kj} / \mathrm{Kg} \mathrm{K}$ for oxygen.
6. Calculate the final temperature, pressure, work done and heat transfer if the fluid is compressed reversibly from volume $6 \mathrm{~m}^{3}$ to $1 \mathrm{~m}^{3}$ when the initial temperature and pressure of the fluid are $20^{\circ} \mathrm{C}$ and 1 bar. The index of compression may be assumed as $1,1.3$ and 1.4 respectively. Take $\mathrm{C}_{\mathrm{p}}=1.005$ and $\mathrm{C}_{\mathrm{v}}=0.718$ and $\mathrm{R}=0.287 \mathrm{Kj} / \mathrm{Kg} \mathrm{K}$.
7. a) State the zeroth law of thermodynamics. Explain how it forms the basis for temperature measurement.
b) A closed system undergoes a thermodynamic cycle consisting of four separate and distinct processes. The heat and work transferred in each process are as tabulated below.

Process	Heat transfer in $\mathrm{Kj} / \mathrm{min}$	Work done in $\mathrm{Kj} / \mathrm{min}$
$1-2$	20,000	0
$2-3$	$-10,000$	30,000
$3-4$	0	20,000
$4-1$	15,000	$-25,000$

Show that the data is consistent with the first law of thermodynamics. Also evaluate the net work output in KW and the change in internal energy.
8. a) State the limitations of first law of thermodynamics.
b) A system undergoes a cycle composed of four processes. The heat transfers n each process are: $400 \mathrm{Kj},-365 \mathrm{Kj},-200 \mathrm{Kj}$ and 250 Kj . The respective work transfers are $140 \mathrm{Kj}, 0,-55 \mathrm{Kj}$ and 0 . Is the data consistent with first law of thermodynamics? [4+10] M
9. A system receives 200 kj of heat at constant volume process and rejects 220 kj of heat at constant pressure and 40 kj of work is done on the system. The system is brought to its original state by an adiabatic process. Calculate the adiabatic work. If the initial internal energy is 240 kj then calculate the volume of internal energy at all points.
10. A system containing $0.2 \mathrm{~m}^{3}$ of air at a pressure of 4 bar and $160^{\circ} \mathrm{C}$ expands isentropically to pressure of 1.06 bar and after this the gas is heated at the constant pressure till the enthalpy increases by 65 kj . Calculate the work done. Now, imagine that these processes are replaced by
a single reversible polytropic process producing the same work between initial and final sate. Find the index of expansion in this case. C_{p} of air $=1.005 \mathrm{kj} / \mathrm{kg} \mathrm{K}$.
11. $2 \mathrm{~m}^{3}$ of hydrogen at a pressure of 1 bar and $20^{\circ} \mathrm{C}$ is compressed isentropically to 4 bar. The same gas is expanded restored to original volume by constant volume heat rejection process. Determine a) pressure, volume and temperature at each end of operation, b) the heat added during the isothermal process. c) the heat rejected during constant volume process and d) change in internal energy during each process. Assume $\mathrm{R}=4.206 \mathrm{kj} / \mathrm{kg} \mathrm{K}, \mathrm{C}_{\mathrm{p}}=14.25 \mathrm{kj} / \mathrm{kg} \mathrm{K}$.
12. a) Explain the limitations of first law and state the essence of second law.
b) Prove that the formula $T^{b} V^{a-b} e^{k t}=$ constant for the adiabatic expansion of the gas if $C_{p}=a+$ KT and $\mathrm{C}_{\mathrm{v}}=\mathrm{b}+\mathrm{KT}$, where a, b, and k are constants and T in K . [6+8] M
13. a) Explain in detail about constant volume gas thermometer.
b) In a certain cyclic process, the heat interactions are $+44 \mathrm{kj},-108 \mathrm{kj},-32 \mathrm{j}$ and 136 kj . Find the net work done during cyclic process.
14. A steam turbine operates under steady-flow conditions. It receives $7200 \mathrm{~kg} / \mathrm{h}$ of steam from the boiler. The steam enters the turbine at enthalpy of $2800 \mathrm{kj} / \mathrm{kg}$, a velocity of $4,000 \mathrm{~m} / \mathrm{min}$, and an elevation of 4 m . The steam leaves the turbine at enthalpy of $2000 \mathrm{kj} / \mathrm{kg}$ a velocity of 8000 $\mathrm{m} / \mathrm{min}$ and an elevation of 1 m . Due to radiation, heat losses from the surrounding amount to $1580 \mathrm{kj} / \mathrm{h}$. Calculate the output of the turbine.
15. Steam enters a nozzle at a pressure of 7 bar and $20^{\circ} \mathrm{C}$ (i.e. initially enthalpy $2850 \mathrm{~kJ} / \mathrm{kg}$) and leaves at a pressure of 1.5 bar. The initial velocity of steam at the entrance is $40 \mathrm{~m} / \mathrm{s}$ and the exit velocity from the nozzle is $700 \mathrm{~nm} / \mathrm{s}$. The mass flow rate through the nozzle is $1400 \mathrm{~kg} / \mathrm{h}$. The heat loss from the nozzle is $11705 \mathrm{~kJ} / \mathrm{h}$. Determine the final enthalpy of steam.
16. In boiler, water enters with an enthalpy of $168 \mathrm{kj} / \mathrm{kg}$ and steam leaves with enthalpy of 2925 $\mathrm{kj} / \mathrm{kg}$. Find the heat transferred per kg of steam. The changes in kinetic and potential energies may be neglected.
17. A reciprocating water jacketed ammonia compressor installed in cold storage delivers 3 $\mathrm{kg} / \mathrm{min}$ of ammonia with a enthalpy of $1670 \mathrm{kj} / \mathrm{kg}$. At the suction line the enthalpy of ammonia is $1465 \mathrm{kj} / \mathrm{kg}$. If the power input of the compressor is 16 kw , find the rate of heat transfer to the water jacket. Changes in kinetic and potential energies may be neglected.
18. A reciprocating air compressor installed in a fertilizer factory takes in air at 1 bar and $20^{\circ} \mathrm{C}$ and delivers at 6 bar. Calculate the work done, heat transfer and change in internal energy per kg of air compressed if the compression process follows a) isothermal, b) reversible adiabatic and c) polytropic $\mathrm{pv}^{1.35}=$ constant. The change in potential and kinetic energies may be neglected.
19. 1 kg of air at 3.5 bar and occupying $0.35 \mathrm{~m}^{3}$ is heated at constant volume until its temperature has risen to $316^{0} \mathrm{C}$. Find (a) initial temperature of air, (b) the final pressure of air, (c) heat added, (d) gain in internal energy per kg. $\mathrm{C}_{\mathrm{v}}=0.715 \mathrm{kj} / \mathrm{kg} \mathrm{k}$.
20. One kg of air having an initial volume of $0.3 \mathrm{~m}^{3}$ is heated at constant pressure of 3.2 bar until the volume is doubled. Find (a) heat added, (b) work done, (c) the initial and final temperature of air.
21.a) Define first law of thermodynamics.
b) In a thermodynamic cycle 1-2-3-4-5-6, the following results were tabulated. Fill in the blanks.

	$1-2$	$2-3$	$3-4$	$4-5$	$5-6$	$6-1$
Q kj	6	--	3	5	-4	--
W kj	3	-3	-9	--	8	4
$\Delta \mathrm{U} \mathrm{kj}$	--	4	--	7	--	--

22. a) Explain in detail the constant pressure gas thermometer.
b) The readings t_{A} and t_{B} of two Celsius thermometers A and B agree well point $\left(0^{0} \mathrm{C}\right)$ and steam point $\left(100^{\circ} \mathrm{C}\right)$. At other points between these two, the temperatures are related by $\mathrm{t}_{\mathrm{A}}=$ $\mathrm{p}+\mathrm{qt}_{\mathrm{B}}+\mathrm{rt}_{\mathrm{B}}{ }^{2}$, where p, q, and r are constants. When the two thermometers are immersed in a well stirred oil bath, while A reads 51, B reads 50. Determine what A reads when B reads 30 .
23. a) What are the advantages of gases over liquids as a thermometric substances.
b) During one cycle, the working fluid in an engine engages in two work interactions: 15 kj to the fluid and 44 kj from the fluid, and three heat interactions, two of which are 75 kj of the fluid, and 40 kj from the fluid. Evaluate the magnitude and direction of the third heat transfer.[6+8] \mathbf{S}
24. a) Make a comprehensive energy analysis of the steam turbine
b) The gas leaving the turbine jet engine flows steadily into the jet pipe with enthalpy $960 \mathrm{kj} / \mathrm{kg}$ and velocity $250 \mathrm{~m} / \mathrm{s}$. The exit from the pipe is at enthalpy $860 \mathrm{kj} / \mathrm{kg}$ and exhaust is in line with intake. Neglecting heat loss from the system. Determine the velocity of gas leaving the pipe.
[6+8] M
25. A cylinder contains $0.115 \mathrm{~m}^{3}$ of gas at 1 bar and $90^{\circ} \mathrm{C}$. The gas is compressed to a volume $0.0288 \mathrm{~m}^{3}$ and the final pressure being 5.67 bar. Calculate (i) mass of the gas (ii) The value of index of compression (iii) Increase in internal energy and (iv) Heat transfer during the process.
[14] M
26. A system consists of 50 kg of copper block initially kept 5 m above the concrete floor and both are at the same temperature. The copper block is allowed to fall. Find $\mathrm{Q}, \mathrm{W}, \Delta \mathrm{U}, \Delta \mathrm{KE}$, $\Delta \mathrm{PE}$ and $\Delta \mathrm{E}$ for the following conditions.
a) at the instant the block if about to hit the floor
b) just after the block has come to rest on the floor.
c) after enough heat has been transferred so that the block and floor are essentially at the same temperature as they were initially.
27. In a piston-cylinder arrangement in which the system is air, calculate the quantity of heat added to the cycle, when the cycle is complete by two processes: compression and expansion as follows:
a) During compression process, piston does $20,0000 \mathrm{j}$ of work on air while 80 kj of heat is rejected to the surrounding
b) During expansion process, air does $3,00,000 \mathrm{j}$ of work on the piston.
28. The following data refer to a closed system which undergoes a thermodynamics cycle consisting of four processes.

process	Heat transfer	Work transfer
$1-2$	Nil	-1000
$2-3$	40,000	Nil
$3-4$	$-4,000$	$-26,000$
$4-1$	12,000	-1000

Show that the data is consistent with thr first law of thermodynamics and calculate:
a) Net rate of work output in KW.
b) Efficiency of the cycle
c) Change in internal energy for each process.
[14] M
29. In a vessel, 10 kg of O_{2} is heated in a reversible, non-flow, constant volume process so that the pressure of O_{2} is increased two times that of the initial value. The initial temperature is $20^{\circ} \mathrm{C}$. Calculate (a) the final temperature, (b) the change in internal energy, (c) the change in enthalpy and (d) the heat transfer. Take $\mathrm{R}=0.259 \mathrm{Kj} / \mathrm{kg} \mathrm{K}$ and $\mathrm{C}_{\mathrm{v}}=0.652 \mathrm{Kj} / \mathrm{kg} \mathrm{K}$ for oxygen. [14] \mathbf{M} 30. A system consists of stone having a mass of 10 kg and a bucket containing 200 kg of water. Initially the stone and water are at the same temperature and then stone falls into water at a height of 90 m . Calculate (i) the change in internal energy (ii) the change in kinetic energy (iii) the change in potential energy, (iv) the heat transferred and (v) the work transferred for the following cases:
a) At the instant the stone is about to enter the water
b) Just after the stone comes to rest in the bucket
c) Heat is transferred to the surroundings at such a rate that stone and water remain at a temperature at which they were initially
31. Air enters a compressor at $10^{5} \mathrm{~Pa}$ and $25^{0} \mathrm{C}$ having volume of $1.8 \mathrm{~m}^{3} / \mathrm{kg}$ and is compressed to $5 \times 10^{5} \mathrm{~Pa}$ isothermally. Determine
(i) work done (ii) Change in internal energy (iii) Heat transfer.
[14] M
32. A fluid system, contained in a piston and cylinder machine, passes through a complete cycle of four processes. The sum of all heat transferred during a cycle is -349 kj . The system completes 200 cycles per min.

Complete the following table showing the method for each item, and complete the net work output in KW.
33. a) Explain in detail about constant volume gas thermometer.
b) Define a new temperature scale, say ${ }^{0} \mathrm{M}$. At ice and steam poit the temperature are $80^{\circ} \mathrm{M}$ and $300^{0} \mathrm{M}$ respectively. Correlate this with the centigrade scale.
34. a) Define and explain zeroth law of thermodynamics.
b) Two thermometers, one Centigrade and other Fahrenhiet immersed in a fluid read the same numerical value. Find their temperature of the fluid expressed in ${ }^{0} \mathrm{~K}$ and ${ }^{0} \mathrm{R}$.
35. A certain thermometer using pressure as a thermometric property yields the values of pressure, p as 1.9 and 6.8 at the ice and steam point respectively. The temperature of the ice and steam point are assigned the number 32 and 212 respectively. Calculate the temperature
corresponding to $\mathrm{p}=3$, if the temperature T is expressed as $\mathrm{T}=\mathrm{a} \ln +\mathrm{b}$ where a and b are constants.
36. a) Give the concept of temperature and differentiate between heat, temperature and internal energy.
b) A gas having the equation of state $\mathrm{PV}=\mathrm{RT}+\mathrm{b}(\mathrm{T}) \mathrm{p}$ is expanded isothermally and reversibly from an initial specific volume V_{1} to a final specific volume V_{2}. Show that the work done per unit mass of gas is

$$
\begin{equation*}
\mathrm{RT} \ln V_{2}-\mathrm{b}(\mathrm{~T}) / \mathrm{V}_{1}-\mathrm{b}(\mathrm{~T}) . \tag{6+8}
\end{equation*}
$$

37. The readings t_{A} and t_{B} of two centigrade thermometers A and B agree at ice point $\left(0^{\circ} \mathrm{C}\right)$ and the steam point $\left(100^{\circ} \mathrm{C}\right)$ but elsewhere are related by the equation $t_{A}=1+\mathrm{mt}_{\mathrm{B}}+\mathrm{nt}_{\mathrm{B}}{ }^{2}$ where $1, \mathrm{~m}$ and n are constants. When both thermometers are immersed in a well stirred oil bath A registers $51^{\circ} \mathrm{C}$ while B registers $50^{\circ} \mathrm{C}$ determine the reading on B when A reads $25^{\circ} \mathrm{C}$.
[14] M
38. A new temperature scale in ${ }^{0} \mathrm{~N}$ is to be defined. The boiling and freezing points on this scale are $400^{\circ} \mathrm{N}$ and $100^{\circ} \mathrm{N}$ respectively.
39. correlate this scale with the centigrade scale and Fahrenheit scale.
40. What will be the reading on new scale corresponding to $60^{\circ} \mathrm{C}$.
41. The temperature t on a thermometric scale is defined in terms of a property p by the relation $\mathrm{t}=\mathrm{alnp}+\mathrm{b}$ where a and b are constants. The temperatures of ice point and steam point are assigned the numbers 32 and 212 respectively. Experiment gives values of p of 1.86 and 6.81 at the ice point and steam point respectively. Estimate or evaluate the temperature corresponding to a reading of $\mathrm{p}=2.5$ on the thermometer.
[14] D
42. What do you mean by "perpetual motion machine of first kind - PMM 1 ?"
b) Air at 1.02 bar, $22^{\circ} \mathrm{C}$, initially occupying a cylinder volume of $0.015 \mathrm{~m}^{3}$, is compressed reversibly and adiabatically by a piston to a pressure of 6.8 bar. Calculate
(i) The final temperature (ii) The final volume (iii) The work done

UNIT - 3

1. a) Define Clausius inequality and prove it.
b) An engine operating on a Carnot cycle works with in temperature limits of 600 K and 300 K . If the engine receives 2000 Kj of heat, evaluate the work done and thermal efficiency of the engine.
2. In order to check the validity of second law of thermodynamics $\mathrm{m}_{1} \mathrm{~kg}$ of water at temperature T_{1} is isobarically and adiabatically mixed with $m_{2} \mathrm{~kg}$ of water at temperature $\mathrm{T}_{2}\left(\mathrm{~T}_{1}>\mathrm{T}_{2}\right)$. Determine the change in entropy of the universe and find an expression for the same for equal mass of water. Also prove that the change is necessarily positive.
[14] M
3. The expansion of a perfect gas is so controlled that the pressure changes according to the law $\mathrm{P}=\mathrm{aV}+\mathrm{b}$ where a and b are constants and V is the volume. The mass of gas is 1.4 kg and the initial and final pressure are 6 bar and 2 bar respectively and the corresponding volumes of 0.2 and $0.6 \mathrm{~m}^{3}$. Assume $\gamma=1.39 \mathrm{R}=0.28 \mathrm{~kJ} / \mathrm{kgK}$ find (i) change in entropy $/ \mathrm{kg}$ during the expansion (ii) Maximum value of internal energy/kg reckoned from $0^{0} \mathrm{C}$ (iii) the net heat removed or added during the cycle.
[14] D
4. Show that when a perfect gas changes from a state P_{1}, V_{1}, T_{1} to another state P_{2}, V_{2}, T_{2}. The increase in entropy per unit mass if given by $S_{2}-S_{1}=C_{v} \ln P_{2 /} P_{1}+C_{p} \ln V_{2 /} V_{1}$. Find the value of index n so that the gain of entropy during heating of the gas at constant volume between temperatures t_{1} and t_{2} will be the same as that during an expansion according to the law $\mathrm{PV}^{\mathrm{n}}=\mathrm{K}$ between the same temperatures. Show also that the heat supplied/unit mass of gas will be the same in each case.
5. $0.2 \mathrm{~m}^{3}$ of air at 1 bar and $60^{\circ} \mathrm{C}$ is compressed to $0.05 \mathrm{~m}^{3}$ according to the law $\mathrm{PV}^{1.3}=\mathrm{K}$. Now the heat is added at constant volume until its pressure is 10 bar. Calculate the change in entropy in each process undergone.
[14] M
6. a) Show that the approximate change of entropy during a polytropic process equals the quantity of heat transferred divided by the mean absolute temperature.
b) If 0.25 kg of air at pressure of 1 bar and temperature $20^{\circ} \mathrm{C}$ is compressed to a pressure of 8 bar according to the law $\mathrm{PV}^{1.25}=\mathrm{K}$. Calculate the following 1) initial and final conditions of the gas 2) work interaction 3) heat interaction 4) change in entropy 5) approximate change in entropy 6) \% error if the entropy calculated by the approximate method Assume $\mathrm{C}_{\mathrm{p}}=1.045$ and $\mathrm{C}_{\mathrm{v}}=0.727 \mathrm{Kj} / \mathrm{kg} \mathrm{K}$.
[6+8] D
7. One kg of air is compressed according to the law $\mathrm{PV}^{1.25}=$ Constant from a pressure of 1.03 bar and a temperature of $15^{\circ} \mathrm{C}$ to a pressure of 17 bar. Calculate (a) the temperature at the end of
compression, (b) the heat rejected or received by the air during the process and (c) the change in entropy. Sketch the operation on T-S diagram. Compare the results if the compression process is isothermal.
8. a) State and explain second law of thermodynamics.
b) 4 kg of air is compressed in a reversible steady flow polytropic process $\left(\mathrm{PV}^{1.25}=\mathrm{C}\right)$ from 1 bar and $30^{\circ} \mathrm{C}$ to 10 bar. Calculate the work input, heat transferred and the change in the entropy.
9. a) Define entropy and show that it is a property of the system.
b) A gas undergoes a non-flow process according to the law $\mathrm{P}=0.15 / \mathrm{V}+2$ bar, where V is volume in m^{3}. Calculate the change in enthalpy during the process if 20 kj of heat is rejected from the system. The initial volume is $0.8 \mathrm{~m}^{3}$.
$[6+8] \mathbf{M}$
10. A certain process occurs in the following manner.
a) Addition of heat at constant volume so that the pressure rises from 6 bar to 15 bar.
b) Polytropic expansion $\mathrm{PV}^{1.3}=\mathrm{C}$ till the system reaches original temperature of $110^{\circ} \mathrm{C}$
c) Isothermal compression till the system reaches original state.

Find (i) temperature at the end of constant volume process (ii) pressure at the end of polytropic expansion (iii) change in entropy during each of the three stages per kg of air.
[14] D
11. a) Show the equivalence of Clausius and Kelvin statement of second law.
b) A heat engine receives heat at the rate of $1500 \mathrm{kj} / \mathrm{min}$ and gives an output of 8.2 KW . Determine (i) the thermal efficiency (ii) the rate of hear rejection. [7+7] S
12. a) What is the difference between the heat engine and the reversed heat engine
b) A domestic food refrigerator maintains a temperature of $-12^{\circ} \mathrm{C}$. The ambient air temperature is $35^{\circ} \mathrm{C}$. If heat leaks into the freezer at the continuous rate of $2 \mathrm{kj} / \mathrm{s}$. Determine the least power necessary to pump this heat out continuously.
13.a) Enumerate the conditions which must be fulfilled by a reversible process. Give some examples of ideal reversible process.
b) Find the coefficient of performance and heat transfer rate in the condenser of a refrigerator in kj / h which has a refrigeration capacity of $12000 \mathrm{kj} / \mathrm{h}$ when power input is 0.75 KW . [6+8] M

14 a) Give the following statements of second law of thermodynamics
(i) Clausius statement
(ii) Kelvin-Planck statement
b) A domestic food freezer maintains a temperature of $-15^{\circ} \mathrm{C}$. The ambient air temperature is $30^{\circ} \mathrm{C}$. If heat leaks into the freezer at the continuous rate of $1.75 \mathrm{kj} / \mathrm{s}$ what is the least power necessary to pump this heat out continuously.
[6+8] M
15. a) Define heat engine, refrigerator and heat pump.
b) A house require $2 \times 10^{3} \mathrm{kj} / \mathrm{h}$ for heating in winter. Heat pump is used to absorb heat from cold air outside in winter and send heat to the house. Work required to operate the heat pump is $3 \times 10^{4} \mathrm{kj} / \mathrm{h}$. Determine
(i) Heat abstracted from outside
(ii) Co-efficient of performance.
16. a) What is perpetual motion machine of the second kind?
b) An inventor claims that his engine has the following specifications

Temperature limits $\quad \ldots \ldots \ldots . .750^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$
Power developed $\quad \ldots75 \mathrm{KW}$
Fuel burned per hour.......... 3.9 kg
Heating value of the fuel...... $74500 \mathrm{kj} / \mathrm{kg}$
State whether his claims is valid or not.

$$
[4+10] \mathbf{S}
$$

17. a) Describe the working of a Carnot cycle.
b) A cyclic heat engine operates between a source temperature of $1000^{\circ} \mathrm{C}$ and a sink temperature of $40^{\circ} \mathrm{C}$. Find the least rate of heat rejection per KW net output of the engine. $\quad[7+7] \mathbf{S}$
18. a) Derive an expression for the efficiency of the reversible heat engine.
b) $300 \mathrm{kj} / \mathrm{s}$ of heat is supplies at a constant fixed temperature of $290^{\circ} \mathrm{C}$ to a heat engine. The heat rejection takes place at $8.5^{\circ} \mathrm{C}$. The following results were obtained
(i) $215 \mathrm{kj} / \mathrm{s}$ are rejected (ii) $150 \mathrm{kj} / \mathrm{s}$ are rejected (iii) $75 \mathrm{kj} / \mathrm{s}$ are rejected $[6+8] \mathbf{M}$

Classify which of the result report a reversible cycle or irreversible or impossible results.
19) a) Define what do you mean by the term entropy.
b) Air at $20^{\circ} \mathrm{C}$ and 1.05 bar occupies $0.025 \mathrm{~m}^{3}$. The air is heated at constant volume until the pressure is 4.5 bar, and then cooled at constant pressure back to original temperature. Calculate
(i) The net heat flow from the air (ii) The net entropy change

Sketch the process on T-S diagram.
20) $0.04 \mathrm{~m}^{3}$ of nitrogen contained in a cylinder behind a piston is initially at 1.05 bar and $15^{\circ} \mathrm{C}$. The gas is compressed isothermally and reversible until the pressure is 4.8 bar. Calculate
(i) The change of entropy (ii) The heat flow (iii) The work done. Sketch the act of P-V and T-S diagram. Assume nitrogen to act as a perfect gas. Molecular weight of nitrogen $=28$.
21. a) Define entropy and show that it is a property of the system.
b) In Carnot cycle, heat is supplied at $350^{\circ} \mathrm{C}$ and rejected at $27^{\circ} \mathrm{C}$. The working fluid is water which, while receiving heat, evaporates from liquid at $350^{\circ} \mathrm{C}$ to steam at $350^{\circ} \mathrm{C}$. The associated entropy change is $1.44 \mathrm{Kj} / \mathrm{kg} \mathrm{K} \mathrm{i}$) if the cycle operates on a stationary mass of 1 kg of water, find the work done per cycle, and the heat supplied (ii) if the cycle operates in steady flow with a power output of 20 KW , and determine the steam flow rate.
[6+8] D
22) A reversible het engine operates between two reservoirs at temperature $700^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between reservoirs at temperature of $50^{\circ} \mathrm{C}$ and -25°. The heat transfer to the engine is 2500 kj and the network output of the combined engine refrigerator plant 400 kj . Determine the heat transfer to the refrigerant and the net heat transfer to the reservoir.
23) 90 Kj of heat is supplied to a system at a constant volume. The system rejects 95 Kj of heat at constant pressure and 18 Kj of work is done on it. The system is brought to original state by adiabatic process. Determine (i) adiabatic work (ii) the values of internal energy at all end states if initial value is 105 Kj .
24) a) What is a flow process and derive the steady flow energy equation.
b) The power developed by a turbine in a certain steam plant is 1200 KW . The heat supplied to the steam in the boiler is $3360 \mathrm{Kj} / \mathrm{kg}$ the heat rejected by the system to cooling water in the condenser is $2520 \mathrm{Kj} / \mathrm{kg}$ and the feed pump work required to pump the condensate back into the boiler is 6 KW . Calculate the steam flow round the cycle in kg / s.
25) a) Derive the expression for heat transfer in the polytropic process.
b) 0.44 kg of air at $180^{\circ} \mathrm{C}$ expands adiabatically to three times its original volume and during the process, there is a fall in temperature to $15^{\circ} \mathrm{C}$. The work done during the process is $52.5 \mathrm{Kj} / \mathrm{kg}$. Calculate C_{p} and C_{v}.
$[6+8] \mathbf{S}$
26) a) Define available energy and unavailable energy.
b) 1000 Kj of heat is supplied to a reversible cyclic engine at $327^{\circ} \mathrm{C}$. The surroundings are at $27^{\circ} \mathrm{C}$. Find the available energy and unavailable energy.
27) a) What do you mean by availability.
b) In a process where mercury is condensing at $327^{\circ} \mathrm{C}$, transfer heat to 10 kgs of saturated water evaporating at $227^{\circ} \mathrm{C}$. The resulting steam is used to run reversible cyclic heat engine which rejects heat at $27^{\circ} \mathrm{C}$ What is the amount of energy available what is the amount lost due to its transfer from $327^{\circ} \mathrm{C}$ to $227^{\circ} \mathrm{C}$. Take latent heat at $227^{\circ} \mathrm{C}$ is $1941 \mathrm{kj} / \mathrm{kg}$.
[4+10] M
28) a) What is irreversibility
b) Hot gases at $5 \mathrm{~kg} / \mathrm{s}$ in a furnace at $1027^{\circ} \mathrm{C}$ are cooled at constant pressure to $327^{\circ} \mathrm{C}$ by transferring the heat to a reversible cyclic heat engine. If the surroundings are maintained at $27^{\circ} \mathrm{C}$ find the amount of energy available and unavailable. Take C_{p} of gases $=1.1 \mathrm{Kj} / \mathrm{kg} \mathrm{K}$.
[2+12] M
29) A system at 500 K receives $7200 \mathrm{Kj} / \mathrm{min}$ from a source at 1000 K . The temperature of atmosphere is 300 K . Assuming that the temperatures of system and source remain constant during heat transfer find out (i) the entropy produced during heat transfer (ii) The decrease in available energy after heat transfer.
30) Calculate the decrease in available energy when 20 kg of water at $90^{\circ} \mathrm{C}$ mix with 30 kg of water at $30^{\circ} \mathrm{C}$, the pressure being taken as constant and the temperature of the surrounding being $10^{\circ} \mathrm{C}$. Take C_{p} of water as $4.18 \mathrm{Kj} / \mathrm{kg} \mathrm{K}$.
[14] M
31) a) Define the coefficient of volume expansion and isothermal compressibility.
b) Show that the equation of state of a substance may be written in the form

$$
\begin{equation*}
\mathrm{dv} / \mathrm{v}=-\mathrm{Kdp}+\beta \mathrm{dT} . \tag{6+8}
\end{equation*}
$$

32) Derive the Maxwell relations and explain their importance in thermodynamics.
33) For the following given differential equations

$$
\mathrm{du}=\mathrm{Tds}-\mathrm{pdv} \text { and } \mathrm{dh}=\mathrm{Tds}+\mathrm{vdp}
$$

Prove that for perfect gas equation

$$
\begin{equation*}
\left(\frac{\partial u}{\partial P}\right)_{T}=0 \quad \text { and } \quad\left(\frac{\partial h}{\partial P}\right)_{T}=0 \tag{14}
\end{equation*}
$$

34) From the fundamentals of Maxwell's relations prove that $C_{p}-C_{v}=T \beta^{2} V / K$.
35) Write the various forms of Tds equations and hence prove $\mathrm{Tds}=\frac{C_{p}}{\beta V} \mathrm{dv}+\mathrm{C}_{\mathrm{v}} \frac{k}{\beta} \mathrm{dp}$
36) a) State the limitations of first law of thermodynamics.
b) A cyclic heat engine operated between a source temperature of $900^{\circ} \mathrm{C}$ and a sink temperature of $50^{\circ} \mathrm{C}$. What is the least rate of heat rejection per KW net output of engine. [6+8] \mathbf{S}
37) a) State and prove clausius inequality
b) A thermal energy source at 800 K loses 2000 K of heat to a sink at (i) 500 K and (ii) 750 K . Determine which heat transfer process is more irreversible.
38) a) Show that the COP of heat pump is greater than the COP of a refrigerator by unity.
b) Prove that the efficiency of a reversible engine operating between two given constant temperatures is the maximum.
39) a) Explain the concept of heat pump
b) A heat engine performs many cycles during which it develops 21 kj work and receives 85 kj heat from the source. Evaluate the thermal efficiency and the heat rejected by the engine.

$$
[6+8] \mathbf{S}
$$

40) a) State the Kelvin-Planck and Clausius statements of the second law of thermodynamics and establish equivalence between them.
b) Determine the power required to run the refrigerator that transfers $2000 \mathrm{Kj} / \mathrm{min}$ of heat from a cooled space at $0^{\circ} \mathrm{C}$ to the surrounding atmosphere at $27^{\circ} \mathrm{C}$. The refrigerator operates on reversed Carnot cycle.

UNIT - 4

1. a) Describe the process of formation and give its graphical representation.
b) Steam enters an engine at a pressure 10 bar absolute and $250^{\circ} \mathrm{C}$. It is exhausted at 0.2 bar. The steam at exhaust is 0.9 dry. Find
(i) Drop in enthalpy (ii) Change in enthalpy.
2. a) Explain the difference between internal energy and enthalpy of wet and dry steam.
b) 2 kg of steam initially at a pressure of 12 bar and a temperature of $250^{\circ} \mathrm{C}$ expands polytropically to 1.2 bar. Find
(i) Final condition (ii) Work done (iii) Change in entropy, assume the index of expansion as 1.25 .
$[6+8]$ D
3. a) Explain with a neat diagram p-v-t surface
b) Find the enthalpy and entropy of steam when the pressure is 2 MPa and the specific volume is $0.09 \mathrm{~m}^{3} / \mathrm{kg}$ [7+7] M
4. A vessel having a capacity of $0.05 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at a temperature of $245^{\circ} \mathrm{C}$. The mass of liquid present is 10 kg . Find the following
(i) The pressure (ii) The mass (iii) The specific volume (iv) The specific enthalpy (v) The specific entropy (vi) The specific internal energy.
5. a) Explain the following terms relating to the steam formation
(i) Sensible heat of water (ii) Latent heat of steam. (iii) Dryness fraction of steam. (iv) superheated steam
b) Determine entropy of 5 kg of steam at 2 MPa and $300^{\circ} \mathrm{C}$, take specific heat of super heated steam as $2.1 \mathrm{Kj} / \mathrm{kg} \mathrm{K}$.
[8+6] M
6. a) Explain T-S diagram for a pure substance.
b) Find the dryness fraction, specific volume and internal energy of steam at 7 bar and enthalpy $2550 \mathrm{kj} / \mathrm{kg}$.
[7+7] S
7. a) Why cannot a throttling calorimeter measure the quality if the steam is very wet.
b) Find the enthalpy, entropy and volume of steam at $1.4 \mathrm{MPa}, 380^{\circ} \mathrm{C}$ using steam tables only.
8. a) Explain the significance of triple point in case of pure substance.
b) Explain in detail the formation of steam with the help of T-H diagram indicating the salient points.
[7+7] M
9. Find the internal energy and enthalpy of unit mass of steam of a pressure of 7 bar
a) When its quality is 0.8
b) When it is dry and saturated
c) Superheated, the degree of superheat being $65^{\circ} \mathrm{C}$. The specific heat of superheated steam at constant pressure is $2.1 \mathrm{Kj} / \mathrm{kg} \mathrm{K}$.
[14] M
10. a) Write a short note on Mollier chart.
b) Find the internal energy of one kg of steam at 14 bar the following conditions:
a) When steam is 0.85 dry
b) When steam is dry and saturated
c) When the temperature of the steam is $300^{\circ} \mathrm{C}$. Take $\mathrm{C}_{\mathrm{ps}}=2.25 \mathrm{Kj} / \mathrm{kg} \mathrm{K} \quad[4+10] \mathbf{M}$
11. a) Draw a neat sketch of throttling calorimeter and explain how dryness fraction of steam is determined. Clearly explain its limitations.
b) Find the dryness fraction, specific volume and internal energy of steam at 7 bar and enthalpy $2600 \mathrm{Kj} / \mathrm{kg}$.
[7+7] M
12. a) Describe with a neat sketch a separating-throttling calorimeter for measuring the dryness fraction of steam.
b) Find the specific volume, enthalpy and internal energy of wet steam at 18 bar, dryness fraction 0.85 .
[7+7] M
13. a) Draw and explain P-T diagram for a pure substance.
b) Determine the amount of heat, which should be supplied to 2 kg of water at $25^{\circ} \mathrm{C}$ to convert it into steam at 5 bar and 0.9 dry.
[7+7] S
14. a) What is a triple point. Explain.
b) What amount of heat would be required to produce 4.4 kg of steam at a pressure of 6 bar and temperature of $250^{\circ} \mathrm{C}$ from water at $30^{\circ} \mathrm{C}$. Take specific heat for super heated steam as $2.2 \mathrm{Kj} / \mathrm{kg}$ K. [6+8] S
15. a) Explain briefly the following processes as applied to steam.
(i) Isentropic process (ii) polytropic process (iii) throttling
b) Using steam tables, determine the mean specific heat for superheated steam:
(i) at 0.75 bar between $100^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$
(ii) at 0.5 bar, between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$
[6+8] M
16. a) Define dryness fraction and with a neat sketch explain any one method of measuring it .
b) Calculate the amount of heat supplied to a boiler to generate $10 \mathrm{~kg} / \mathrm{s}$ of steam at a pressure of 10 bar and 0.95 dry if the water is supplied to if at $30^{\circ} \mathrm{C}$ and at same pressure.
[7+7] S
17. A closed vessel of $1.5 \mathrm{~m}^{3}$ capacity contains steam at 3 bar and 0.8 dryness fraction. Steam at 10 bar and 0.9 dryness fraction is supplied until the pressure inside the vessel reaches 5 bar. Calculate the mass of steam supplied and the final condition of steam in the vessel.
[14] D
18. a) Define critical point and triple point.
b) In a throttling calorimeter the pressure of the steam measure before and after throttling are 16 bar and 1 bar respectively. Find the dryness fraction of steam before passing through the calorimeter if the temperature after throttling is $150^{\circ} \mathrm{C}$. Assume C_{p} for superheated steam at 1 bar is $2.1 \mathrm{Kj} / \mathrm{kg} \mathrm{K}$.
19. Calculate the state of steam i.e. whether it is wet, dry or superheated for the following cases:
(i) Steam has a pressure of 15 bar and specific volume of $\mathrm{m}^{3} / \mathrm{kg}$.
(ii) Steam has a pressure of 10 bar and temperature $200^{\circ} \mathrm{C}$.
(iii) Steam has pressure of 30 bar and if $2700 \mathrm{kj} / \mathrm{kg}$ of hat is required to generate steam.
[14] M
20. Two kg of steam at a pressure of 20 bar exists in the following conditions
(i) wet steam with a dryness fraction of 0.9
(ii) dry and sarurated steam
(iii) super heated steam with temperature $250^{\circ} \mathrm{C}$.

Calculate (a) enthalpy (b) volume (c) entropy and (d) internal energy
Assume $\mathrm{C}_{\mathrm{p}}=2.302 \mathrm{kj} / \mathrm{kg} \mathrm{K}$ for superheated steam.
[14] M
21. a) Draw and explain a P-T diagram for a pure substance.
b) Dry and saturated steam at 12 bar expands in cylinder to 2 bar having 0.8 dryness fraction according to the law $\mathrm{PV}^{\mathrm{n}}=$ c. Calculate (a) The index of expansion and (b) work done. [7+7] \mathbf{S}
22. Find the internal energy of 1 kg of steam at 20 bar when
(i) it is superheated, its temperature being $400^{\circ} \mathrm{C}$
(ii) it is wet, its dryness being 0.9

Assume superheated steam to behave as a perfect gas from the commencement of superheating and thus obeys Charles's law. Specific heat for steam $=2.3 \mathrm{kj} / \mathrm{kg} \mathrm{K}$.
[14] D
23. 1000 kg of steam at a pressure of 16 bar and 0.9 dry is generated by a boiler per hour. The steam passes through a super heater via boiler stop valve where its temperature is raised to $380^{\circ} \mathrm{C}$. If the temperature of feed water is $30^{\circ} \mathrm{C}$, determine:
(i) The total heat supplied to feed water per hour to produce wet steam
(ii) The total heat absorbed per hour in the super heater.

Take specific heat for superheated steam as $2.2 \mathrm{kj} / \mathrm{kg} \mathrm{K}$.
24. A pressure cooker contains 1.5 kg of saturated steam at 5 bar. Find the quantity of heat which must be rejected so as to reduce the quality to 60% dry. Determine the pressure and temperature of the steam at the new state.
25. a) Steam at 150 bar has an enthalpy of $3309 \mathrm{kj} / \mathrm{kg}$, find the temperature, the specific volume and the internal energy.
b) Steam at 19 bar is throttled to 1 bar and the temperature after throttling is found to be $150^{\circ} \mathrm{C}$. Calculate the initial dryness fraction of the steam.
[7+7] S
26. Steam at 18 bar and 0.95 dry is throttled to 14 bar and passed to an engine which expands it isentropically to 0.3 bar and exhausts at this pressure. Determine (a) entropy per kg of steam entering the engine (b) the steam consumption of the engine in $\mathrm{kg} / \mathrm{kwh}$, (c) the thermal energy per kg of steam leaving the boiler. Use mollier chart.
[14] D
unit-I
Thermodynamic s:-

- Thermodynamics is a science which deals with the relations among heat work and properties of system which are in equilibrium.
(or)
Therme dynamics deals with the behaviour of gases and weapours under variation tempera lure and pressure.
(or)
Thermodyamamics basically entails (explain) four laws known as zero th, dst, and and 3rd lacy of themodyan amice.
zeroth law: concept of temperature
(First lace 7 concept of internal energy second law: - concept of entrophy Third lac: :- concept of absolute zero.

The application of thermodyanamics is extremely code its principles are used in desiging of energy converting devices. such as steam engines, IC ergines, steam tervine, gas. tervime refrigirators air conditioners heat "transfer etc.

Def:- The study of three ϵ^{\prime} 's is called thermodyanamics. The three E^{\prime} 's are.

Macroscopic

1. classical thermo dynamic

In this approach a certian quantity of mater consider without taking in to the even's a carr's at molecular level. This approach is com cert with over all behaviour it is known a s classical the mo dynami CS.
\qquad
©.
The values of the properties of system are their average value s these properties like pressure and.

- temperature cancel measure very easily The changes im-properities
can be test by all of - Senses the properties like velocity momentum.

3. The analaysis of macroscopic system reavires simple mathematical formula

Microscopic

1. statistical thermaly namics:
2. This approach is that the system of made up of a very y large number of discript particles known as molecules. This app roachis concerned directly with the structure of matter this is known as Statistical thermoding mics

2The properties II KC

- Velocity momention mi - se energy etc which de scribes the mole cause can not be easily measure by instruments oursenss can mot feel them.

3. The behaviour of the system is found by using statistical methods. As the no of molecules is very large. so advanced stalk stical and mathematical method, are need to explain the - Changes in the system.
4. Fodder to describe the system only few properties are needed.
5. large number of varia bles are needed to describe to a system 50 the approachis complicated.

Thermodynamic, systhe term system is define as a prescribicd region of a spaced of fate quantity of mater surroundims by on envolpe is called boundary
Sourroundimg ; The space and matter exctrm al throush the thermodynamic system and out side the boundary is called the soarram amis.
Universe: - when system and soafroundimsput together is called universe.
Types of system
D closed system
Dopen system
3) isolated system
4) Adiabatic system
closed system:- a system is caned a closed system
if the mass Wrath in the boundary of the system reamims constant and only energy (Heat and cork) may transfer a cross it's

Ex:- Gas enclosed in a cycimder
boundary
open system:- Asystem is called an open system if the mass as wall as the energy transfer across it's boundary EX:- air compreshon, terbied i"
isolated system:- A system is called an
isolated system if naisther mass nor $\sin ^{n} g y$ transfer across it's boundary
Ex:- Hurd in thermoflask
Adiabatic system: An adiabatic system one inhich is thermally insulated from it's sotroune ing. It can however exchange work with it's sourroundings
Ex:- Air condition system or Refiglarator syst

State:- state is the condition of the system at an mstant of time described by its properties such as pressure, temperature etc.
path:- A Thermodyanmic system passing throe series of 0 consturbe path
property:- A property of a system is it's measurable characterstics describing the system The measurable characterstics are mass, Physic composition temperature, pressure volume etc. Properties are classified into two catageras

1) Intensive property
2) Extensive

Intensive:- If the value of the property does not depend upon the mass of the system is called on intensive property
Ex: pressure, temperature, viscosity et c
Extensive : - If the value of the property expends upon the mass of the system it is called on extensiveproperty.
Ex:- volume, $P E, K E, 9 \cdot E$ etc
Derivation:- Assume an eacation of state relations three properitics of system such that X, y, z will be function of $f(x, y, z)=0 \rightarrow \mathbb{D}$
Assume that it' is possible to solve the above equation for each of the variable that is

$$
\begin{equation*}
x=x(y, z) y=y(x, z) z=z(x, y) \tag{2}
\end{equation*}
$$

if cue suppose that the last equation z is the dependend variable then r and y are mdependent variables.

$$
d z=\left(\frac{d z}{d x}\right) d x-\left(\frac{d z}{d y}\right) d y
$$

$$
\begin{aligned}
M= & \left(\frac{d z}{d x}\right) y \cdot N=\left(\frac{d z}{d y}\right) x \\
& d z=M d x+N d y
\end{aligned}
$$

solving the above eaciation with exact differential equation it can be written as. $\frac{\partial m}{\partial y}=\frac{\partial \sim}{\partial x}$
The function ahich satisify the above ea is called a point function a proper tyof the system
problems
Discus whether the following quantites can be used as the property as not

$$
\begin{aligned}
& \text { (1) } \int p d u t \int v d \\
& z=\int d v+\int u d \\
& d z=m d x+v d y \\
& \frac{\partial m}{\partial y}=\frac{\partial w}{\partial x} \\
& \frac{\partial p}{\partial p}=\frac{\partial \cdot v}{\partial v} \\
& 1=1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& z=\int p d u+00 \\
& d z=\int p d u+00 \\
& \frac{\partial p}{0}=\frac{0}{\partial v} \\
& \neq 0
\end{aligned}
$$

(iii) $=V d^{P}$

$$
\begin{array}{r}
d P=\int v d p+00 \\
\frac{\partial V}{\sigma}=\partial \frac{0}{P}
\end{array}
$$

(iv) $d p=f(T) d t+\frac{R J}{V} d v$
mod xt $N d y$

$$
\begin{aligned}
& \frac{\partial m}{\partial y}=\frac{\partial \sim}{\partial x} \\
& \frac{\partial f(t)}{\partial v}=\frac{\partial\left(\frac{R T}{V}\right)}{\partial T} \\
& \quad \sigma \neq \frac{R}{v}
\end{aligned}
$$

It is not a property
process:- A process is defined as a travsianon i m which a system changes from one intial State to a final state state one is the imtal state of the system due to expenson of the system P. the foal state is 2 the lime P 1 to 2 is the process that has taken place
cyclic process :

If any system under goes through series of process from one state and hence with th same intial state by forming complete cycle, so that the property of the system at the end of the cycle are same as at the begaring. the system is said to unde go a cydic process

Quasi static process:-

Aquasistatc proces is one in which the system deviates from one equilibrium state by only infimate sima amount through out the enter Process quasi mean's almost imfinate slow ness is the charaterstic feactare of a quasistatic process. A quasistatic process is also called reversiable process

Thermo dynamic eacilibrium

$$
\left[\begin{array}{ll}
P_{1} T_{1} & P_{7} \\
P_{1} T_{1} & P_{1}
\end{array}\right]-\begin{aligned}
& \text { isolated } \\
& \text { system }
\end{aligned}
$$

A system is said be a be ate of thermody namic equilibrium the value of the property is say at all points ' m the, system
consider an isolated system, Gas enclosed in contain. The measured pressure and temperat -are made vary intialy with time but afmal stage will come when they no variation of pressure and tom perature. After eaulitrium is reached it is invarient with time the equilibrium reached can not be departed Spantenious
It can be noted that the thermodynamic equilibilic is a complete equilibrium and it mclude the mechoonical, chemical, thermal and electrical equilibrium
zeroth law of themodyanmics

Consider three systems A, B and C as shown in the fig: perfectally insulated from sourroundimgs if AandC are brought mm good contact energy in the form of heat will transfer from the body at a higher temperature to the body at lower temperature. After certian time they will be in thermal equilibrium. If B and C are trout into good contact after some time this two will be in thermal equilibrium. From this experment ore can conclude that if two systems are each in thermal equilltrium with a third system they are alsointhermal equilibrium with each other
Let us consider a thermametric property L (say length of mercury colum of mercury thermometer) such that the temperature 't is a linear function of this property

$$
t=a L+b
$$

where a and b are arbitary constants in order to determine this constant Grand b are numirical values first asian numerical values room tempera/ur antioun Say both are fixed compenents

Let small I represent Ice point and s repres steam point then in centegrate scale $L_{s}-L_{i}=100$ put m this values for t we get
at ice point $0=a$ Li $b \rightarrow 0$
at steam point $100=a l s+b \rightarrow$ (

$$
b=a L_{i}
$$

$$
\begin{aligned}
100 & =a L S-a L_{i} \\
& =a\left(L_{S}-L_{i}\right) \\
a & =\frac{100}{L S-L_{i}} \\
b & =\frac{-100 L_{i}}{L S-L_{i}} \\
t_{c} & =a L+b \\
& =\frac{100 L}{L_{s}-L_{i}}-\frac{100 L_{i}}{L S-L_{i}} \\
t^{\circ} c & =\frac{100 C L-L i)}{L_{S}-L_{i}} \cdot m \quad c G
\end{aligned}
$$

Somilary in fern heat scale then are

$$
\begin{equation*}
t F=\frac{180 L-L_{i}}{L_{S}-L 1+3 \Omega F H} \tag{Iq}
\end{equation*}
$$

From eaciections (3)and (4) we con get the relation bloc Gand FH scale.
From -a v(3)

$$
\text { From -av(3) } L-L i=\frac{L^{0} c}{L s-L_{i}}=\frac{100}{\text { Flo se }}
$$

$$
\begin{aligned}
& t_{F}^{0}=18 \phi^{\circ} \times \frac{t c^{\circ}}{10 \phi}+32 \\
& t^{0} F=\frac{9}{5} t c+32 \\
& t^{\circ} c=\frac{5}{9} \times\left(t^{\circ} f-32\right)
\end{aligned}
$$

A thermometer is calibarated in such a moaner that in ice it reads 32° and 212 when in boiling voter what will it read when the measured temperature is 293 K

$$
\begin{aligned}
293 \mathrm{~K} & =20+273 \\
& =20^{\circ} \mathrm{C} \\
t^{\circ} \mathrm{C} & =\frac{5}{9}\left(t^{\circ} \mathrm{F}-32\right) \\
20 & =\frac{5}{9}\left(t_{\mathrm{F}}-32\right) \\
t^{\circ} \mathrm{F} & =\frac{9}{5}(20+32) \\
& =\frac{9}{5}(52) \\
t^{\circ} \mathrm{F} & =68^{\circ} \mathrm{FH}
\end{aligned}
$$

$$
\begin{aligned}
\text { Ratikine scale } & =60 \mathrm{f}+460 \\
& =68460 \\
& =528^{\circ} R
\end{aligned}
$$

Define a new temperature scale sand degre M at steam and ICe points the temperatures are $80^{\circ} \mathrm{M}$ and $300{ }^{\circ} \mathrm{M}$ respectively corelate this with centegrade scale

$$
\begin{align*}
& 80=a l i \psi b \\
& 300=a L S+b \tag{2}\\
& a=\frac{220}{L S-L i} b=80-\frac{220 L i}{L S-L i} \\
& E^{\prime} M=\frac{220 L_{i}}{L_{S}-L_{i}}+80-\frac{20 L_{i}}{L_{S}-L_{i}} \\
& t^{\circ} M=\frac{220}{L S-L_{i}}\left(L-L_{i}\right)+80 \quad a=\frac{220}{L S T E_{i}} \\
& t^{\circ} C=100 \frac{L-L i}{L S-L i} \\
& \frac{L-L i}{2 S-2 i}=\frac{t^{0} c}{100} \\
& b=\frac{80-220 L i}{L S-U_{i}} \\
& t^{\circ} M=200 \times \frac{t^{\circ} C}{100}+80 \\
& \epsilon^{\circ} M=22 t^{\circ}++80
\end{align*}
$$

chat will be the temperature of fluid expressed R and O_{k} when two thermamcters one ferhom heat and another centigrade are imprsed in a same fluid the readmgs of ferhon heat is just tribe that of
C° scale

$$
\begin{aligned}
& t^{\circ} \mathrm{F}=3 t^{\circ} \mathrm{C} \\
& t^{\circ} \mathrm{C}=\frac{5}{9}\left(t^{\circ} \mathrm{c}^{-32}\right) \\
& =\frac{5}{9}\left(3^{\circ} \mathrm{C}^{-32}\right) \\
& 9 t^{\circ} \mathrm{C}=5\left(3 t^{\circ} \mathrm{C}-32\right) \\
& 9 t^{\circ} \mathrm{C}=15 t^{\circ} \mathrm{C}-160 \\
& 15 t^{\circ} \mathrm{C}-9 t^{\circ} \mathrm{C}=160 \\
& 6 t^{\circ} \mathrm{C}=160
\end{aligned}
$$

$$
\begin{aligned}
& t^{0} C=\frac{160}{6} \\
& t^{\circ} \mathrm{C}=26.6 \\
& t^{0} K=26.6 \\
& t^{\circ} \mathrm{K}=26.6+273 \\
& t^{\circ} \mathrm{K}=299.6^{\circ} \mathrm{K} \\
& t^{\circ} \mathrm{R}=t^{\circ} \mathrm{f}+460 \\
& t^{\circ} \mathrm{F}=3(266) \\
& t^{\circ} \mathrm{F}=79.8 \\
& t^{0} R=798+460 \\
& t^{0}=258
\end{aligned}
$$

using
A certian the rmometer calculated ice and stream point as fixed point at temperatar 0° and 100° respectively the function of thermometric substance is taken as:
$t=a \log x_{e}+b$ insted of usual 1 me ear function $t=a x+b$ show that the new scale is given by $t=\frac{100 \log x / x}{\log _{e} x / x i}$

$$
\begin{aligned}
& \sigma=a \log _{p} x_{1}+b \text { Cine point) } \\
& 100=a \log x_{e} s t b \text { (steampoint) } \\
& 100=a \log _{e} x s-a \log x_{i} \\
& =a \log x_{3} / x_{j} \\
& a=\frac{-100}{\log _{e} x_{3} / x_{i}}
\end{aligned}
$$

$$
\begin{aligned}
b & =-a \log x_{i} \\
b & =-\frac{\log \log _{e} x_{i}}{\log x_{3} 3 / x_{i}} \\
t & =\frac{100}{\log x 3 / x_{i}} \times \log _{e} x-\frac{\log \log x_{i}}{\log x_{3} x_{i}} \\
& =100 \\
& \left.=\frac{\log _{e} x x_{i}}{\log _{e} x_{3} / x_{i}}\right\}
\end{aligned}
$$

The readings ta andtis of two centergade thermometers, A and B agree at ice port $0^{\circ} \mathrm{C}$ and Steam point at $100^{\circ} \mathrm{C}$ But t square LA - L tmatB+ntB where Land in and are constants when Both therometars impers well Arergisters $51^{\circ} \mathrm{C}$ and B registers $50^{\circ} \mathrm{C}$ Determine the reading on B when A is $25^{\circ} \mathrm{C}$

$$
t_{A}=1+m+B+n t^{2} B
$$

alice point

$$
\begin{aligned}
& 0=l+0+0 \\
& \lambda=0
\end{aligned}
$$

Steam point

$$
\begin{aligned}
& \text { Steam point } \\
& 100=1+m(100)+n(100)^{2} \\
& 100=m(100)+n(100)^{2} \\
& L A=51^{3} C L B=58^{\circ} \mathrm{C} \\
& 51=0+m(50)+n(50)^{2}
\end{aligned}
$$

Solving (2) and (3)

$$
m=\frac{104}{100} \quad n=-\frac{1}{2500}
$$

Near scale:-

$$
\begin{aligned}
& t A=\frac{\text { scale: }}{0+} \frac{104}{100} t B=\frac{1}{2500} t B^{2} \\
& \quad t A=25^{\circ} \mathrm{C} \\
& 0 t B=0 \cdot+\frac{104}{100} \cdot t B-\frac{1}{2500} \not B^{2} \\
& t B=2427^{\circ} \mathrm{C}
\end{aligned}
$$

The temperature t as the thermometric scale is defied im terms of property P by the relation $t=a \log _{e} p+b$ where A
the temperature of ice point and steam piet asimed the numbers 32 and 212 exper mont gives values of p as 1.86 and 6.81 at the ice point and steam point respective l Evaluate the temperature correspoinding to the reading of $p=2-50$ on the thermal ter

$$
\begin{aligned}
& t=a \log _{e} p+b \\
& 32=a \log _{e} 1.86+b \\
& \frac{t}{212}=a e_{e} 6.81+b \\
& a=1387 \\
& b=-5407 \\
& t=1387109 P-54.07 \\
& p=25 \\
& t=138.7 \log _{e} 2.5-54.07 \\
& t=72.93 \mathrm{Cov})=13^{\circ} \mathrm{FA}
\end{aligned}
$$

chapter -2
Work :- work is said to be done when a force move through a distance work is a trangiate Quantity which only appears of the boundary while a change of state is taking place with in a system. work is something which appears at the boundary when a system changes it's state due to the moment of a part of the boundary under the action of force work done by a system = tw workdone by a system $=-W$ 'It is denoted by ' W '
Heat:-
Heat is denoted by a symbol Q it may be defied as something which appears at the boundary when a system changes it's state due to a differents in temperature blu the system and it's sourroundimgs heat like a work is a trance ante quantity which only appecirs boundary whits change the place with in sentence.
Ir Neisther $\delta \omega$ or δQ are exact different are therfore it is a path function

Heat received by the system $=t Q$ Heat rejected by the system $=-Q$
comparkeson of work and Heat w iou /orstras

* Similarities
* Both are path function intact differential
* Both are tocondary phenomena that is bo thare recoginized at the boundaries of the system as they cross them
* Both are associated with a process not with a state \qquad
* systems pocess energy tut not work on heat
dis similarities
* In heat transfer temperature difference is reaculred
* In a stable system there cant be work transfer however there is no restruction for transfer of heat.
* The sole effect external to the system could be reduced to raise of a weight but incase of heat transfer othereffects of also observe.
point function:- when two properties
22 Locate a point on the graph then those tao properties is called as point function Ex:- Temperature, volume, pressure ct C.
path function:- There are certian auantites which carry be located on a graph by a point but are given by the area on that graph: The area parparimg to the particular process to the function of path are process such quantites are called as path' function
Ex:- Heatwork etc.

$$
Q_{1}-2 \cdot \int_{1} G_{1}=G_{2}-Q_{1}=\omega_{1}
$$

Control volume : A fixe of region mm a phase called a control volume through which mas momentum and energy my flea the surface of the control volume of is called the control surface

Reversible and irreversible process:-
A Reversible process Calsocalledas Quasi static process) is one which can be stoped att any state and reverst so that the system and surroundings
 are exactly restored to their initial state
Ex:-1) Firction less relative motion
2) Expenstion and comphersion of spring

An Irreversible process:
transfer through a in on e mich heat
temperature
Ex:- combusion, Expension
work done during reversible process $\omega^{\omega}=\mathrm{SpdV}$
pidu-work in various quasi sta tic process
(i) constant pressure process (isobaric process)

(ii) constant volume process (isochoric process)

$$
\begin{aligned}
& \omega_{1}-2=\int p d v \\
& \omega_{1}-2=0
\end{aligned}
$$

constant temperature process (isothermal process)

$$
\begin{aligned}
\omega_{1}-2 & =\int p d v \\
p u & =c \\
p & =\frac{c}{v} \\
\omega 1-2 & =\int \cdot \frac{c}{v} d v \\
& =c \int_{1}^{2} \frac{d v}{v} \\
& =c \ln v]_{1}^{2} \\
& =c \ln \frac{v_{2}}{v_{1}} \\
\omega_{1-2} & =A v_{1} \ln \frac{v_{2}}{v_{1}}
\end{aligned}
$$

Reversible adiabatic process

$$
\begin{aligned}
& \omega_{1}-\omega_{2}=\int p d U \\
& P V=R \quad(V=1.4) \text { for ait } \\
& p=\frac{c}{V V}=c^{V} V \\
& \omega_{1}-\omega_{2}=\int c v^{-v} d v \\
& =a\left[\frac{-v+1}{-v+1}\right]_{1}^{2} \\
& =C\left[\frac{v_{2}-\sqrt{k}+1-v_{1}-\sqrt{+1}}{-\sqrt{+1}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =C \frac{V_{2}-V-V}{1-V} \\
& p_{1} V=p_{1} V_{1} V=R_{2} V_{2} V=C \\
& =\frac{C V_{2} 1-V-C v_{1}^{1-V}}{1-V} \\
& =\frac{p_{2} V_{2} V V_{2} V-P_{1} V_{1} V_{V} V_{1}^{1-V}}{1-V} \\
& =\frac{p_{2} V_{2} V}{\frac{V_{2}}{V_{2} V}} \\
& =\frac{p_{2} V_{2}-p_{1} V_{1}}{1-V} \\
& W_{1}-2=\frac{p_{1}-v_{1}-P_{2}}{1-V}
\end{aligned}
$$

poly tropic process:-

$$
\begin{aligned}
& P v^{n}=c \\
& C n=1.1-1.3 \text { for air } \\
& \omega_{v}-2=\int p d v \\
& P v=c \quad c n=1 \cdot M-1.3 \text { forair) } \\
& p=\frac{2}{v^{n}}=c v^{-r} \\
& \omega_{1}-2=\int c v^{-n} d v \\
& \\
& =c\left[\frac{v^{-n+1}}{-n+1}\right]_{1}^{2} \\
& =\left[\frac{v^{2}+1}{-n+1} v_{1}^{-n+1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =c\left[\frac{v_{2}^{1-n}-v_{1}^{1-n}}{1-n}\right] \\
& \therefore p_{1} n=p_{1} v_{1} n=p_{2} v_{2}^{n}=c \\
& =\frac{c v_{2} 1-n-c v_{1}^{1-n}}{1-n} \\
& =\frac{p_{2} v_{2}^{n} v_{2}^{n}-p_{1} v_{1} n_{1} v_{1} 1-n}{1-n} \\
& p_{2} v_{2} n \frac{v_{2}}{v_{2} n^{n}} \\
& =\frac{p_{2} v_{2}-p_{1} v_{1}}{1-n} \\
& \omega_{1}-2=p_{v_{1}-p_{2} v_{2}}^{n-1} \\
& \omega_{1-2}=\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1}
\end{aligned}
$$

What is the work done whet to tough a from 4 miterubed for 8 minuted in which the non flow quasis static \quad y $p=(4 v-5)$ bar
pressure p is given by

$$
\begin{aligned}
& P=(4 v-5) b a r \\
& w_{1}-2=\int_{4}^{2} p d v \\
&=\int_{4}^{2}(4 v-5) \times 105 \cdot d v \\
&=\left[\frac{1}{4} \frac{v^{2}}{2} \div 5 v\right]^{8} \times 105 \\
&\left.=4 \frac{(82-42)}{2}-5(8-4)\right] \times 010^{5} \\
&=4\left[\frac{(64-v 6}{2}-5(4)\right] \\
&=4\left[\left(\frac{48}{2}\right)-40\right] \\
&=4[(24)-20]
\end{aligned}
$$

$w_{1-2}=96 \times 105$ vole
In a piston system arrangment the ron flow process is given by $v=\frac{200 \text { mere }}{p}$ w is men
find work done where the pressure morean from one tar to lo bay

$$
\begin{aligned}
& V=\frac{200}{p} . \quad p=\frac{200}{V} \\
& V_{i}=\frac{200}{V}=200 \mathrm{~m}^{3} \\
& V_{2}=\frac{200}{10}=20 \mathrm{~mm}^{3} \\
& w_{1}-2=\int_{1}^{2} p d v \\
& =\int_{200}^{20} \frac{200}{v} d v \\
& =200 \times \int_{200}^{20} \frac{d v}{v} \\
& =200 \times\left[r^{200} \ln \right]_{200}^{20} \times 10^{5} \\
& -200 \times \ln (20-200) \times 10^{5} \\
& =200[\ln 20-\ln 200] \times 105 \\
& =200{ }^{\circ}(-2.30258) \times \\
& =200\left(268 / 96, \text { ale }=200-460.5 \times 10^{5}\right. \\
& =-4.605 \times 167 . \mathrm{J}
\end{aligned}
$$

Anon flow reversible process across for which $p=302+\frac{1}{v}$ where pin the bar and v is m^{33} what will be the work done Why While change from on 5^{3} to $1.5 \mathrm{~m}^{3}$

$$
\begin{aligned}
p & =\frac{3 v^{2}+\frac{1}{v}}{3} \\
& =1-2=\int_{0.5}^{3} p d v \\
& =\int_{0}^{5}\left(3 v^{2}+\frac{1}{v}\right) d v \\
& =\int_{3} 3 \frac{v^{3}}{3}+109 v \\
& =\left[3 \cdot \frac{v^{3}}{3}+109 v\right]_{0.5}^{1.5} \times 10^{5} \\
& =\left[3 \cdot(1.5)^{3}+109(1.5)\right]-\left[3 \cdot \frac{(0.5)^{3}}{3}+\log (0.5)\right] \\
& =[3.36+0.405]-[0.125+(-0.693)] \\
& =[3.765]-[-0.568] \times 10^{5} \\
& =[3.765+0.568] \times 10^{5} \\
& =4.333=4.333 \times 10^{5} 504105
\end{aligned}
$$

* The gas havims equation of the state $P=R T+$ $b(T) p$ is expended isothermal m and reversibly from an 'mil specific volume'v, to a final specific volume v_{2} show that the work done per unit mass of gas is $R T \operatorname{in} \frac{v_{2}-b(T)}{V_{1}-b(T)}$

SO /4

$$
\begin{gathered}
P V=R T+b C T P \\
P V-b(T) P=R T \\
P(V-6(T)]=R T \\
P=\frac{R T}{V-b(T)}
\end{gathered}
$$

$$
\begin{aligned}
\omega_{1}-2 & =\int_{V_{1}}^{v_{2}} p d v \\
& =\int_{v_{1}}^{v_{2}} \frac{R T}{V-b(T)} d v \\
& =R T \int_{v_{1}}^{/ 2} \cdot \frac{1}{V-b(T)} d V \\
& =R T(\ln V-b(T)]_{V}^{V_{2}} \\
& =R T\left(\ln V_{2}-b(T)-\ln V_{1}-b c T\right] \\
\omega_{1}-2 & =R T \ln \frac{v_{2}-b(T)}{v_{1}-b(T)}
\end{aligned}
$$

Hence proved
A piston cylinder arrangment contiaing a fluid at a 10 bar, the imital volume beaimg $0.05 \mathrm{~m}^{3}$ find the workdone by the fluid when it's expensons reversbily for fine
following cases
(1) At constant pressure to a final volume

Q2. A / C to linear lac to a final value of $0.2 \mathrm{~m}^{3}$
$0.2 \mathrm{~m}^{3}$ and feal pressure of 2 bal
3. Ale to lace $P V=$ constant to a fmal volume of $0.1 \mathrm{~m}^{3}$
4. ANC to law $P V^{3}=$ constant to a final Volume of $0.06 \mathrm{~m}^{3}$
5. Ak to la. $P=\frac{A}{V^{3}}-\frac{B}{V}$ to a final volume of $0.01 \mathrm{~m}^{3}$ and a final pressure of 1 bar whieke A and B are constants

1) Given that

$$
\begin{aligned}
& \text { Intial folume }=0.05 \mathrm{~m}^{3} \\
& \text { wintal volume }=0.2 \\
& =P\left(0.2 \mathrm{~m}^{3}-0.05 \mathrm{~m}^{3}\right) \\
& =10(0.15) \\
& 10=A(0.05)+B \quad 2=A(02)+\frac{20}{A} \\
& 2=A(0.2)+B \\
& A+B=\frac{10}{0.05} \\
& A+B=\frac{20}{A}
\end{aligned}
$$

2.

$$
\begin{aligned}
& y=m x+c \\
& p=A v+B \\
& P_{1}=A v_{1}+B=0 \\
& P_{2}=A v_{2}+B \Rightarrow \text { (2) } \\
& 10=0: 5+B=-0,10=A(0.05)+B \\
& 2=0.2+B=\frac{2}{-8=0.15 A} \\
& \begin{array}{l}
10=0.05+B \\
(=-2.2+B \\
8=0.15
\end{array} \\
& A=\frac{-8}{0.15} \quad 10=-2.665+B \\
& B=12.260 \mathrm{C} \\
& A=-53.3 \\
& A=-53.33 \\
& B=12.66 \\
& P=-53.33+12.66 \\
& c_{1}-2=\int_{v_{1}}^{v_{2}} p d v \\
& =\int_{V_{1}}^{V}(-53.33+12.60) d v \\
& =\left[-53.33 \frac{v^{2}}{2}\right]_{0.05}^{0.2}+(12.66 v)_{0.05}^{0.2}
\end{aligned}
$$

$$
34.65 \hbar
$$

$$
\begin{aligned}
& =\left[-53.33 \frac{(0.05)}{2}\right]+[12.66(0.2)-12.66(0) \\
& =-66=\left[-53.33 \frac{(0.05)^{2}}{2}+53.33\left(\frac{0.2}{2}\right)^{2}\right] \\
& +[12.66(0.2)-12.66(0.05)] \\
& =\left[-53.33 \frac{(0.2)^{2}}{2}-\left(53.33 \frac{(0.05)}{2}\right]+[12.66(0.2)+\right. \\
& 12066(0.05)] \\
& -1.0666-\left(-53.33 \mathrm{Cl} .25 \times 10^{-3}\right) \\
& -1.066-0.666 \\
& -1.732+[2.532+0.633] \\
& -1.732+4.897 \\
& =1.433 \times 10^{5} \\
& p v=c \\
& =\int_{6.05}^{0.1} \cdot \frac{c}{v} d v \\
& =c[\ln v)]_{0.05}^{0.1} \\
& =c[\ln 0.1-\ln 0.05] \\
& =\text { xVI }[\ln 0.1-\operatorname{tn} 0.05] \\
& =10 \times 10^{5} \times 0.05[\ln 0.1-\ln 0.05] \\
& =10 \times 105 \times 0.05 E \\
& 50000[\text { in. } 0.1-\ln 0.05) \\
& 50000 \text { to. } 6931471806 \text {) } \\
& =34657
\end{aligned}
$$

$$
\begin{aligned}
& p v^{3}=c \\
& w_{1}-2=\int p d v \\
& =\int_{v_{1}}^{v_{2}} \cdot \frac{C}{v^{3}} d v \\
& =c \int_{0.05}^{0.06} \frac{1}{v^{3}} d v \\
& =c\left[\frac{-3+1}{-3+1}\right]_{0.05}^{0.06} \\
& =\operatorname{PIN}, 3\left[\frac{v^{-2}}{-2}\right]_{0.05}^{0.6} \\
& =\frac{-10 \times 10^{5} \times(0.05)^{3}}{2}\left[\cdot \frac{1}{v^{2}}\right]_{0.05}^{0.6} \\
& =\frac{40 \times 10^{5} \times(0.05)^{3}}{2} \cdot\left[\frac{1}{(0.06)^{2}}-\frac{1}{(0.05)^{2}}\right] . \\
& \frac{d}{\frac{d}{200}-1} \\
& \begin{array}{c}
-62-5[277.77-400] \\
{[2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}=1 \text { bar } \\
& P=\frac{A}{V^{3}}-\frac{B}{V} \\
& \dot{10}=\frac{A}{(0.05)^{3}}-\frac{B}{(0.01)}-\frac{A}{(0.01) 3}-\frac{B}{0.01}
\end{aligned}
$$

Apluid at pressure of 3 bar with specific volume $0.18 \mathrm{~m}^{3}$ perkg contained ina cyl diode behimed a piston expends veversbily to a pressure of 0.6 bar A / C to lace $P=\frac{C}{V^{2}}$ where c is constant. Calculated the workdone by the fluid on the friction

$$
\begin{aligned}
& P_{1} v_{1}^{2}=P_{2} v_{2}{ }^{2} \\
& V_{2}{ }^{2}=\frac{P_{1} V_{1}{ }^{2}}{P_{2}} \\
& =\frac{3 \times(0.18)^{2}}{0.6} \\
& =\frac{3 \times 0.0324}{0.6} \\
& =\frac{0.0972}{0.6} \\
& t_{2} 2=0.162 \\
& v_{2}=\sqrt{0.162} \\
& v_{2}=0.402 \\
& =c \int_{0.18}^{0.40} \frac{1}{V^{2}} d v \\
& =c \int_{0.18}^{0.18} v^{-2} d v \\
& =c \int_{0.18}^{0.40}\left[\frac{v^{-2 t}}{-2 t 1}\right]^{0.40} \\
& =-C\left[\frac{1}{V}\right]_{0.18}^{0.40} 0.18 \\
& =-P_{1 v_{1} 2}\left[\frac{1}{0.40}-\frac{1}{0.18}\right] \\
& =-(3 \times 10.18) 2[2.15-5.55] \\
& =(0.0972) \times 10^{5}[-3.05] \\
& =-(0.0972) \times 105[-3.05] \\
& =0.0972 \times 3.05 \times 10^{5} \\
& =0.29646 \times 10^{3} \\
& =29.646 \mathrm{kj}
\end{aligned}
$$

First law of Themodynaminics
This lac is the conservation of energy sine energy cain elsther be created or destroyed but only converted from one from to anothe Thermodyanomicaly the first lace may be stated as the algebraic sum of the cu s delivered throush the sourrounding is prapotion to the algebric sum of is taken by the surroundmgs

$$
\oint \delta a-\oint \delta w
$$

No machine is capabile producing the energy without corresponding expendature of the energy are its imposible to constr a pervachuel motion machine - (PMM-I)
A machine are device which contriuasly produced work without any other 4 mi action with the envoirnment is called PMM-I
one very important conceptence of first law p of themodyamamics is that the energy of
 a system is a property in order to prove this
consider a closed system which conder a change of it's state 1 to 2 as show 'm the figure. The srostem may produced from 1-2 along the path A
and then back to vavignal state 1 along the path Band C. If. the system operate $1-A-2-B-1$ then $\oint . \delta Q=\oint \delta \omega$

$$
\begin{aligned}
& \delta \delta q-\delta \delta \omega=0 \$(\delta a-\delta \omega)=0 \\
& \int_{1}^{2}(\delta q-\delta \omega) p a+h A+\int_{2}^{1}(\delta a-\delta \omega) p a+h B=0 \\
& 1-A-2-c-1 \\
& \int_{1}^{2}(\delta a-\delta \omega) p a+h c+\int_{2}^{1}(\delta q \delta \omega) \text { path } c=0
\end{aligned}
$$

comparing the above two equation S

$$
\int_{2}^{1}(\delta 9-\delta \omega) \text { pathB}=\int_{2}^{1}(\delta g-\delta \omega) \text { path } C \rightarrow 0
$$

equation (0) suggest that when a system operators b/w state 1 and state 2 the quantity $\int_{2}^{1}(\delta Q-\delta \omega)$ is constant A respective path B or pathe does the value of $\left.\int^{2} \delta G-\delta \omega\right)$ is solely fixed by the end' states and is mdependent of the path therfore $(\delta q-\delta \omega)$ it is exact differential caution and it's integral is a property this called the total energy \in of the system

$$
\int_{1}^{2} \delta G-\delta \omega=\int_{1}^{2} d E
$$

$$
\delta Q-\delta \omega=d E \rightarrow(2)
$$

from
Equation (2) is the differential of first law of thermodyanamic applied to a closed system (non flow process)

For an isolated system $\delta Q=0, \delta \omega=0$

$$
=d E
$$

Therfore the differential form of first lac of themedyanamics is $Q_{1}-2-\omega_{2}-1=U_{2}-U_{1}$,

$$
\text { or } 8 a-\delta w=d u
$$

Application of first law to a closed system (ho n-flow process)

Constant volume cor) isochori i process:

$$
\begin{gathered}
Q_{1}-2=\text { dut ool-2 } \\
G_{1-2}=\vec{u}_{2}-\text { Internal engergy }^{0} \\
\text { Heal } Q_{1}-2=m v_{v_{V}}\left(T_{2}-T_{1}\right)
\end{gathered}
$$

constant pressure coll isobaric process:-

$$
\begin{array}{rlrl}
d a & =d \omega+d u \\
& =d P u+d u & & \\
& =d(u+P v) & H=\text { entha) } d y \\
d Q & =d t s=m c_{P}\left(T_{2}-T 1\right) & d t=\text { chanseincity }
\end{array}
$$

constant temprature (or) isothermal process

$$
\begin{aligned}
& \delta Q=d u+\delta \omega \\
&= \int p d v \\
&= p v e c \\
& p=\frac{c}{v} \\
&= \int \frac{c}{v} d v \\
& \delta Q=p i v i \ln \frac{v_{2}}{v_{1}}
\end{aligned}
$$

$$
\text { Re } 0=\int \frac{C}{v} d v
$$

Rever sible a diabatic process

$$
\delta Q=0
$$

polyzropic process :-

$$
\begin{aligned}
& Q_{1}-2=c_{2}-41+\omega_{1}-2 \\
& =m c_{v}\left(T_{2}-T_{1}\right)+m R \frac{\left(T_{2}-T_{1}\right)}{1-n} \\
& =m\left(T_{2}-T_{1}\right)\left[C_{V}+\frac{R}{1-n}\right] \\
& R=C_{P-C v}=m\left(T_{2}-T_{1}\right)\left[\left[C_{v}+\frac{c_{p}-c_{v}}{1-n}\right]\right. \\
& =m\left(T_{2}-T_{1}\right)\left[\frac{C X-n c v+C P-C v}{1-n}\right] \\
& =m\left(T_{2}-T_{1}\right)\left[\frac{c p-n c \tau}{1-n}\right] \\
& c_{n}=\frac{c p-n c}{1-n} \\
& Q_{1}-2=m\left(T_{2}-T_{1}\right) c_{h} \\
& n=\frac{c p-n c v}{1-n} \\
& C P-C v=R \\
& \frac{c v\left(\frac{c p}{c v}-n\right)}{1-n} \\
& =\frac{c v(v-n)}{1-n} \\
& C V\left(\frac{C P}{C y}-1\right)-R \\
& C V(V(-r)=R \\
& c v=\frac{R}{W-1} \\
& c_{n}=\frac{c_{v}(r-n)}{1-n} \\
& Q_{r-2}=m \frac{\operatorname{CV}(\sqrt{-n})}{1-n}\left(T_{2}-\pi\right) \\
& =m \times \frac{R}{V-1} \times \frac{V-n}{1-n}\left(T_{2}-T_{1}\right) \\
& Q_{H 2} \cdot \frac{V-n}{V-1} \times \frac{\left.m R C_{2}-T_{1}\right)}{1 n-n}
\end{aligned}
$$

$Q_{1-2}=\frac{V-n}{V-1} \times c \cdot \cdot D$ durins poly tropic proces

Explanation of graph In a PV diagram draco State 1 to state A is constant pressure
state 1 to state B is the isothermal compreshon cooling State 1 to state C is the Reversableadiabatic process ($n=1$ Stat 21 to state D is the
Similarly state 1 to A^{\prime} is constant pres sure heat $(n=0)$
state i to state Bl is the isoth ermalexpension ($n=1$)
State 1 to state C^{\prime} : s the peversableadiatate expansion $\mathrm{Cri}_{2}=\gamma$)
state 1 to state DI is the constant volume coolms process

Afluid system contianed ina piston and cycimder machine possess throush a comply cycle of four process the sym of all heat transfered during a cycle is -340 kJ the system completes 200 cycles per minute complethe followims table showing the method for each iteam and compuet the net rate oof work out nut in kw

process	$9(k J / \min)$	$\omega(k J / m i n)$	$\Delta E(k J / m i n)$
$1-2$	0	4340	-
$2-3$	42000	0	-
$3-4$	-4200	-	-73200
$4-1$	-	-	-

sum of all heat transfored cycle $=-340$ Number of cycle completed 200 per minute

$$
\begin{aligned}
& \delta Q=\Delta E+\delta \omega \\
& \int a-\Delta E+\delta \omega \\
& Q=\Delta \varepsilon+\omega \\
& a=D \varepsilon+\omega \\
& 0=\Delta E+34 B 40 \\
& =\Delta r+4340 \\
& \Delta E=-4340 \mathrm{~kJ} / \mathrm{min} \\
& \Delta \Sigma_{2}=-4340 \mathrm{~b} \\
& \text { Proof } 2-3 ; Q=\Delta \varepsilon+\omega \\
& 42000=A E+0 \\
& \Delta E=42.000 \mathrm{~kJ} / \mathrm{min} \\
& \text { Proof 3-4 } \quad \text { Q }=A \varepsilon+\omega \text {. } \\
& -4200=-73200+\omega \\
& \omega=69000 \mathrm{~kJ} / \mathrm{min} \\
& \text { proof } 4-1 Q_{1.2}+Q_{2}-3+Q_{3}-4+Q_{u-1}=-340 \lambda 200 \\
& 9 y-1=-105800 \times 5 / \mathrm{mi}
\end{aligned}
$$

cyclic integral of any property is

$$
\begin{aligned}
& S E_{E}=0 \\
& \Delta E_{1}-2+\Delta E_{2}-3+\Delta E_{3}-4+\Delta E 4-1-4200=-73200+ \\
& \Delta E_{1}-1=35540 \mathrm{~kJ} / \mathrm{min} \\
& \omega_{4}-1=Q u-1-\Delta \varepsilon_{4}-1 \\
& \omega_{4-1}=-141340 \mathrm{~kJ} / \mathrm{min} .
\end{aligned}
$$

process	Q(kJ/mim)	$\omega(k J / \mathrm{mim})$	$A E(k J / \mathrm{min})$
$1-2$	0	4340	-4340
$2-3$	42000	0	42000
$3-4$	-4200	69000	-73200
$4-1$	105800	-141340	35540

$$
\Sigma_{\text {cycle }}=\cdot \sum_{\text {cycle }}
$$

Cook $O / P=-68000 \mathrm{~kJ} / \mathrm{min}=-\frac{68000}{60} \frac{\mathrm{~kJ}}{\mathrm{~S}} \mathrm{~K}$
In a wegam 10 kg of oxygen is heated in a Reversible non flow constant volume Process so that pressure of oxygen is increased teatime that of intial volume the intial bemperatare is $20^{\circ} \mathrm{C}$ calculate

1) Final temperature
2) change in internal energy
3) The change in Enthpipy
4) Heat trains form

Fake $R=0.259$ and $c v=0.652 \mathrm{~kJ} / \mathrm{kg} \mathrm{k}$
for oxygen
1)

$$
\begin{aligned}
\frac{P_{1} y_{1}}{T_{1}} & =\frac{P_{2} u_{z}}{T_{2}} \\
T_{2} & =\frac{P_{2}}{P_{1}} \times T_{1} \\
& =\frac{2}{1} \times(20+273) \\
T_{2} & =586 K
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
\Delta u & =m c_{v}\left(T_{2}-T_{1}\right) \\
& =10 \times 0.652(586-293)^{\prime} \\
\Delta 4 & =191036 \mathrm{~kJ}
\end{aligned}
$$

3)
4)

$$
\begin{aligned}
& a_{1-2}=\omega_{1-2}+\Delta u \\
& a_{1-2}=\cdot 191036 k J
\end{aligned}
$$

A system recives 200 kJ of heat at constan volume process and rejects 220 kJ of heat at constant pressure and 40 kJ fork done a system the system is broush to it's orem state by a adiabatic process calculate the adiabatic cork if the internal energy is 240 kJ then calculate the value of interne energy at all the points

process 1-2

$$
\begin{aligned}
& Q_{1}-2=u_{2}-u_{1}+\omega_{1}-2 \\
& 200=u_{2}-240 \\
& u_{2}=440 k 5
\end{aligned}
$$

process 2-3

$$
\begin{aligned}
& Q_{2}-3=4_{3}-4_{2}+\omega_{2}-3 \\
& -220=43-440-40 \\
& a_{3}=260 \mathrm{~kJ}
\end{aligned}
$$

process $3-1$

$$
\begin{aligned}
Q 3-1 & =43-u 1+\omega_{1}-3 \\
& =260-240+\omega 1-3 \\
\omega & =-20 k 5
\end{aligned}
$$

Calculate the final temperature pressure work done and heat transformer if the fluid compleshe Reversibility from volume $6 \mathrm{~m}^{3}$ to $1 \mathrm{~m}^{3}$ when the mitial temperature and pressure of fluid or 200° and 1 bar the mex of comprhesion may be assumed as 1,1.3 and 1.4 respectively take $c_{p}=1.005$ and $c_{0}=0.718$ kJper kelvin

$$
R=0.287 \mathrm{kJper} k g \text { kevin }
$$

1)

$$
\begin{aligned}
& P_{1} v_{1}=p_{2} v_{2} \\
& 1 \times 6=p_{2} \times 1 \\
& p_{2}=6 \text { bar }
\end{aligned}
$$

2)

$$
\begin{gathered}
T_{1}=20+273 \\
T_{2}=293
\end{gathered}
$$

3)

$$
\text { 3) } \begin{aligned}
W \cdot D & =P \cdot V \ln \frac{V_{2}}{V_{1}} \\
& =105 \times 6 \ln \frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
W+D & =\frac{P_{1 N_{1}}-P_{2} U_{2}}{n-1} \\
& =\frac{1 \times 10^{5}(6)-1027(13-1}{13} \times(1)
\end{aligned}
$$

$$
\omega \cdot D=-1423 \mathrm{~kJ}
$$

$$
\begin{aligned}
& =-1075055.685 \\
& \omega n=-1075 \mathrm{~kJ} \\
& Q_{1}-2=u_{2}-u_{1}+\omega_{1}-2 \\
& a_{11}-2=4075 \mathrm{~kJ} \\
& n=1.3 \\
& R_{1 v_{1}}{ }^{n}=P_{2} V_{2} n \\
& \text { Pivis }_{1 i_{3}}^{1_{3}=P_{2}\left(v_{2}\right)^{1.3}} \\
& \frac{p_{2}}{p_{2}}=\left(\frac{v_{1}}{v_{2}}\right)^{1-3} \\
& P_{2}=R \times\left(\frac{v_{1}}{\sqrt{2}}\right)-3 \\
& \left.=1 x\left(\frac{b}{1}\right) \right\rvert\,-3 \\
& P_{2}=10.27 \text { tar } \\
& \frac{T_{2}}{T_{1}}=\left(\frac{v a}{v_{2}}\right)^{n-1} \\
& -\frac{T_{2}}{293}=\left(\frac{6}{1}\right) 1 \cdot 3-1 \\
& T_{2}=293\left(\frac{6}{1}\right)^{0.3} \\
& T_{2}=501.54
\end{aligned}
$$

$$
\begin{aligned}
& Q_{1} \cdot 2=m c_{n}\left(T_{2}-T_{1}\right) \\
& =m\left(\frac{c p-n_{n}}{1-n}\right)\left(T_{2}-T_{1}\right) \\
& \dot{D}_{1} V_{1}=m \text { RTI }_{1} \\
& W_{R}=\frac{P U_{1}}{R T_{1}} \\
& \begin{aligned}
a_{1.2} & =\frac{1 \times 10.5 \times 6}{287 \times 293}=\frac{\frac{N}{m^{2}} \times m^{3}}{\frac{J}{\mathrm{~kg} \times k}}=\frac{\mathrm{N}-m}{\frac{\mathrm{~J}}{\mathrm{~kg}}}=\frac{\pi}{\frac{D}{\mathrm{~kg}}}=\mathrm{kg} \\
m & =7.135 \mathrm{~kg}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 9_{1.2}=-355 \mathrm{~kJ}{ }^{2} 7.135(-1.2884)(208.54) \\
& \begin{array}{l}
7.135 \frac{(1.005-1.3 \times 0.7184}{1-1.3}(50154 \\
7.135 \frac{(1.005-0.9334)(208.54}{-0.3}
\end{array} \\
& p_{1} v_{1}{ }^{1 \cdot 4}=p_{2}\left(v_{2}\right)^{1.4} \\
& \frac{p_{2}}{p_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{1.4} \\
& P_{2}=P_{1} \times\left(\frac{v_{1}}{v_{2}}\right)^{1.4} \\
& p_{2}=1 \times\left(\frac{6}{1}\right)^{1.4} \\
& \begin{array}{l}
=(6)^{1.04}=12.28 \\
=12.286
\end{array} \\
& \begin{array}{l}
7.135\left(\frac{0.0}{-0.3}\right)(208.54 \\
7.135(-0.3866)(2.08 .54)
\end{array} \\
& 9_{1.2}-355 \\
& +\pi 6 \text { voma } \\
& \frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{Q_{2}}\right)^{\frac{\alpha-1}{\gamma}} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{V_{R}}{V_{R}}\right)^{n-1} \\
& T_{2}=\left(\frac{6}{1}\right) 1.4-1 \\
& =599 k
\end{aligned}
$$

$$
\begin{aligned}
\omega \cdot D= & \frac{A V_{1}-P 2 V_{2}}{r^{\prime}-1} \quad \omega-0
\end{aligned}=\frac{P_{1} V_{1}-P_{2}}{\gamma-1}=\frac{P^{106}(6)-12.86(1)}{1.4-1)}=\frac{1 \times 10^{5} \times 6-12.286 \times 105}{1.4-104}
$$

prove that the formula a $T^{b} v^{a-b} e^{k} 7=$ constant for adiabatic expension of gas if $c p=a+k T$ $c v=b+k T$. verere a, b and k are constant and $\#$ in kelvin

$$
\begin{aligned}
& S^{\circ}=d u+\delta \omega \\
& 0=d u+\delta \omega \\
& =m c v d T+P d u \\
& 0=c v d T+P d v \quad(P u=R T \\
& O=(b+k T) d \cdot T+R T \times \frac{R T}{V} \\
& R=C Q=c u . \\
& =a+k(T-b-1 / L T \\
& R=a-b
\end{aligned}
$$

$$
\begin{aligned}
& a=(b+k T) d T+(a-b) T \frac{d V}{V} \\
& 0=(b+k T) \frac{d T}{T}+(a-b) \frac{d u}{V} \\
& b \ln T+k T+(a-b) \ln v=c \\
& b \ln T+k T \ln c^{e}+(a-b) \ln v=\ln k \\
& \ln T^{b}+\ln \varepsilon^{k T}+\ln v a-b=\ln k \\
& \ln T b e^{k T} V^{a-b}=\ln k \\
& T^{b} e^{k T} V^{a-b}=k
\end{aligned}
$$

 (39)b-(x\&) b-abov? - Relo)
chafifer-2
Flow process! - various forms of energy assosiated in flow process for unit mass

$$
\begin{aligned}
& e_{f}=u+p v+\frac{c^{2}}{2}+g z \\
& c_{f}=h+\frac{c z}{2}+g z
\end{aligned}
$$

** The general studied flow energy eq (SFE)

$$
\begin{gathered}
c_{1}+q=c_{f_{2}}+w \\
h_{1}+\frac{c_{1} 2}{2}+g z_{1}+q=h_{2}+\frac{c_{2}^{2}}{2}+g z_{2}+w
\end{gathered}
$$

work done dorms study flow process

$$
\begin{aligned}
& \left(\operatorname{adsf} \cdot=-\int v i d p-d\left(k_{E}\right)-d(p E)\right. \\
& \text { cuts } f=-\delta u d p
\end{aligned}
$$

Study flow process for an ideal gas we assume that an ideal gas undergoes a studied flow process from state 1 to state 2 The equation for studied flow return as

$$
\begin{aligned}
q-\omega & =\left(h_{2}-h_{1}\right)+\frac{c_{2}^{2}-c_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right. \\
\delta q-\delta a & =d h+d c k E)+\theta(P E)
\end{aligned}
$$

Adiabatic process

$$
\begin{aligned}
& \left.\delta_{\text {wu sf }}=d h-d a \text { RE }\right)-d(P I) \\
& \delta_{\text {chs }}=\left(h_{1}-h_{2}\right)+\frac{c_{1}^{2}-c_{2}+g\left(2,-z_{2}\right)}{2}
\end{aligned}
$$

for an ideal gas

$$
\begin{aligned}
& d h=c p \Delta T \\
& \therefore \quad \Delta h=\int_{1}^{2} c_{p} d \tau=h_{2}-h_{1} \\
& \delta_{S f}=-\int_{1}^{2} c_{p} \Delta T+\frac{c_{1}^{2}-c_{2}^{2}}{2}+g\left(z_{1}-z_{2}\right) \\
& \omega_{S f}=-\Delta h=\left(h_{1}-h_{2}\right)=-\int_{1}^{2} c p \Delta T
\end{aligned}
$$

Cork Do
For any flow process in (stud yflow the work dane by the expressed equation)

$$
\delta \omega S f=-U d p-\alpha C(K E)-d(P E)
$$

Reversible isothermal process

$$
\begin{aligned}
& p \forall=C \\
& v=\frac{c}{P}
\end{aligned}
$$

$$
w_{S F}=-\int v d p
$$

$$
=-\int \frac{c}{p} d p
$$

$$
\left.=-c \ln P_{1}\right]_{1}^{2}
$$

$$
=-P_{1} v_{1} \ln \frac{P_{2}}{P_{1}}
$$

$$
\begin{aligned}
& \omega_{S_{f}}=P+V \left\lvert\, \ln \frac{P}{P}\right. \\
& \omega_{s f}=m R T_{1} \ln \frac{V_{2}}{V_{1}}
\end{aligned}
$$

polytropic process

$$
\begin{aligned}
& P v^{n}=c \\
& v^{n}=\frac{c}{P}
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{c^{1 / n}}{p / n} \\
& V=c^{1 / n} p^{-1 / n} \\
& \omega_{s f}=-\int_{s}^{2} V d p \\
& =-c^{\frac{1}{d}} \cdot \int_{1}^{2} p^{-1 / n} d P \\
& =-c^{1 / n}\left[\frac{p^{-\frac{1}{n}+1}}{-\frac{1}{n}+1^{6}}\right]_{1}^{2} \\
& =-c^{1 / n}\left[\frac{1-\frac{1}{n}}{p_{2}-p_{1}^{1-\frac{1}{n}}} 1\right] \\
& =-c^{1 / n} \frac{p_{2}^{1-\frac{1}{n}}-c^{n / n} p_{1}^{1-\frac{1}{n}}}{\frac{n-1}{n}} \\
& p_{1} v_{1}{ }^{n}=p_{2} v_{2} n=C \\
& =\frac{-\left(p_{2} \cup 2^{n}\right)^{1 / n} p_{2} \cdot \frac{1}{n}-\left(p_{1} v^{n}\right)^{1 / n}+p_{1}+\frac{1}{n}}{\frac{n-1}{n}} \\
& =\frac{P_{2} V_{2}-P_{1} V_{1}}{\frac{n-1}{n}}
\end{aligned}
$$

Heat trans form er

$$
\begin{aligned}
& \delta Q-\delta \omega=d c h t \frac{c^{2}}{2}+g 2 \\
& \delta Q-\delta \omega=d h \\
& S Q=d h^{k} \delta \omega
\end{aligned}
$$

$$
=\left(h_{2}-h_{1}\right)+\frac{n}{n-1}\left(p_{2} v_{2}-p_{1} v_{1}\right)
$$

For Revrisable adiabatic process

$$
w_{S F}=\frac{\gamma}{r-1}\left(P_{2} V_{2}-P_{1} V_{1}\right)
$$

constant volume process

$$
\begin{aligned}
& \omega_{S f}=-\int_{1}^{2} p d p \\
&=-v \int_{1}^{2} d p \\
&=-v\left(p_{2}-p\right) \\
& \omega_{S f}=v\left(p_{1}-p 2\right) \\
& \dot{\omega}_{S f}=-\int_{1}^{2} v d p \\
& \omega_{S f}=0
\end{aligned}
$$

A steam turtme operates under study flow condific it receives $7200 \mathrm{~kg} / \mathrm{hr}$ steam from the tolled. The steam end of the turtime at entholpyny of $2800 \mathrm{kJk} / 9$ a velocity of $4000 \mathrm{~m} / \mathrm{m}$ in under an avelations of 4 m due to radition heat loses from the turbine to the surroundings amounts to $-1580 \mathrm{~kJ} / \mathrm{hr}$ the steam leaves the turbine at the enthalpy of $2000 \mathrm{~kJ} / \mathrm{kg}$ at velocity of 8000 m under elvation of 1 m calculate output of the सurbme

$$
\begin{aligned}
& c_{1}+q=e f_{2}+w \\
& h_{1}+\frac{c_{1} 2}{2}+9 z_{1}+q=h_{2}+\frac{c_{2}^{2}}{2}+9 z_{2}+\omega \\
& 2800+\frac{16000000}{2}+9.81 \times 4(-15800)=2000+\frac{64000000+9801}{h_{1}=2800 k s} \\
& \frac{k v}{k} \dot{k}+\frac{m}{s}+\frac{m}{s^{2}}+m+\frac{k s}{h x} \\
& -\frac{1880}{3600 \%}+2 \\
& m=\frac{7200}{3600} \frac{\mathrm{~kg}}{\mathrm{~h}}, \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& m=2 \mathrm{~kg} 1 \mathrm{~s} \\
& \frac{2}{-2}+92+9+\frac{n t}{2} \\
& \begin{array}{l}
\left.x_{2}^{2}+2\right)^{2}=-1580 \mathrm{~kg} / \mathrm{hv} \\
h_{2}=-2000 \mathrm{~kJ} / \mathrm{kg}
\end{array} \\
& =\frac{-1580}{3600 \times 2} \frac{k v}{\mathrm{~s}} \times \frac{\mathrm{s}}{\mathrm{~kg}} \\
& v_{2}=8000 \mathrm{~m}(\mathrm{mim}) \\
& z_{2}=1 \mathrm{~m}^{\prime} \\
& a=-0.219 \mathrm{~kJ} / \mathrm{ly} \\
& \text { hit } \frac{c^{2}}{2 g c}+\frac{9 z 1}{9 c}+q \\
& \frac{1}{9_{c}}=1 \cdot 1 \text { (stunts) } \\
& g_{c}=\operatorname{kg}-m\left(N-\sec ^{2}\right. \\
& \frac{c_{1}^{2}}{2 g c}=\frac{\operatorname{hr}^{2}}{\sec ^{2}} \times \frac{N-\sec }{k g n}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{N-m}{k g}=\frac{J}{k g}=\frac{k J}{k g \times 1000} \\
& \frac{g 4}{g^{c}}=\frac{m}{\sec \times} \times m \times \frac{n-s c^{2} c 2}{k g-m}=\frac{n-m}{k g}=\frac{J}{k} s=\frac{k J}{k s \times 1000} \\
& 2800+\frac{(4000)^{2}}{(60)^{2} \times 2 \times 1000}+\frac{9.81 \times 4}{1000}-0.219 \\
& (6002 \times 2 \times 1000 \\
& =2000+\frac{(8000)^{2}}{(60)^{2} \times 2 \times 1000}+\frac{9.81 \times 1}{1000}+\omega
\end{aligned}
$$

$2800+8888888-889+0.03924-0.219$
$8891688 \cdot 709=35550.35557555 .57$
$2800+2.22+0.0^{3} 9-0.219=2000+8.88+9.81 \times 10^{-3}$
$2802.04=2008.88$ $2802.04=2008.88$
w $7^{79} 3.143 \mathrm{~kJ}$.

$$
\begin{aligned}
& \neq 193.143 \mathrm{~kJ} \\
& =793.143 \times 2 \text { kJ } \times \frac{\mathrm{kg}}{\mathrm{ks}} \mathrm{n} \times \frac{\mathrm{c}^{2}}{\mathrm{k}} \times \mathrm{g} 2 \mathrm{~h} \\
& \omega=1586.28 \mathrm{kTiscorlkw}
\end{aligned}
$$

Steam enterganozle at a pressure of 7 bar and $20^{\circ} \mathrm{C}$ intial velocity of steam at enters is 40 m of r sec and at exist is $700 \mathrm{~m} / \mathrm{s}$ with an intial entholpy $2850 \mathrm{~kJ} / \mathrm{kg}$ the mass flored nozel heatnocalfrom the mussfloued tom nac is mass flored nozel is $1105 \mathrm{~kJ} / \mathrm{hr}$ detarmine tad Fional enthlopy of Steam.
notms

$$
\begin{aligned}
& 2850 \frac{\mathrm{~kJ}}{\mathrm{ks}} \mathrm{ClCCCCO} \rightarrow \\
& m=1400 \mathrm{~kg} / \mathrm{hv} a=-11705 \frac{\mathrm{~kJ}}{\mathrm{hr}}, \\
& 700 m^{\prime} \mathrm{s} \\
& q=-11705 \frac{\mathrm{~kJ}}{\mathrm{br}^{2}} \frac{\mathrm{xh}}{\mathrm{~kg}} \\
& \begin{array}{ll}
h_{1}+\frac{c_{1}}{2 g}+z \not \phi^{\circ}+a=h_{2}+\frac{c_{2}^{2}}{2 g} & +2 \beta^{2} g+\omega^{\circ}
\end{array} \\
& h_{1}+\frac{c_{1}^{2}}{20}+q=h_{x}+\frac{c_{2}^{2}}{2} \\
& h_{2}=h_{1}+\frac{c 1^{2}-c_{2}^{2}}{2}+q \\
& =2850+\frac{240 d^{2}}{2}(-500)^{2}-836
\end{aligned}
$$

$$
h_{2}=2597.4 \mathrm{kJlkg}
$$

Ina boilear water enters with enthlphy of $168 \mathrm{~kJ} / \mathrm{kg}$ and steam leaves with a enth/phyof $2925 \mathrm{~kJ} / \mathrm{kg}$ find the heat transfer per kg of steam the changes in KE and PE may be regrate

$$
\begin{aligned}
& h_{1}+\frac{c_{1} 2}{2000}+\frac{g z 1}{1000}+q=h_{2}+\frac{c_{2}}{2000}+\frac{g z \frac{2}{1000}+\phi}{h_{1}+q=h_{2}} \\
& q=h_{2}-h_{1} \\
& q=2925-168 \\
& q=2757 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

A reciprocates air compressre instal fled in 9 fortllizer factory takes in air at 1 bar $20^{\circ} \mathrm{C}$ and deliverse at 6 bar calculate work done heat transfer and change in internal energy per kg of air compresed if the compresthon process follows a) ISO thermal
b) Revorsib(c adiabatic
c) polytropic

- haums index 1.25 changes in PE and KE may be neglated
Iso thermal process

$$
\begin{aligned}
W_{S F} & =P_{1} V_{1} \cdot \ln \frac{V_{2}}{V_{1}} \\
& =R T_{1} \cdot \ln \frac{P_{1}}{P_{2}} \\
& =0.287 \times(293) \ln \frac{1}{6} \\
& U_{S}
\end{aligned}=-150.67 \mathrm{~kJ}+9 .
$$

Heat

$$
\begin{aligned}
& \delta Q-\delta Q=d \cdot H H \\
& \delta Q-\delta \omega=m c p \pi \\
& \delta Q=\delta a \\
& \delta Q=-15067 \mathrm{~kJ} / \mathrm{kg} \\
& \Delta u=0
\end{aligned}
$$

reversible a diabatic

$$
\begin{aligned}
& \omega_{S E}=\frac{r}{r-1}\left(P_{1} U_{1}-P_{2} U_{2}\right) \\
& \left.=\frac{r}{\sqrt{-1}} R C_{1}-T_{2}\right) \\
& \cdot \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right) \frac{\gamma-1}{\gamma} \\
& T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right) \frac{1-4-1}{1-4} \\
& T_{2}=293\left(\frac{6}{1}\right) \frac{14}{1-4} \\
& T_{2}=293\left(\frac{6}{1}\right) 0.285 \\
& T_{2}=486.38 k \quad 50(.03 \\
& \begin{array}{l}
=\frac{1.4}{1.4-1} \cdot 6287(293-486.38) \\
3.5 \quad 682(003)
\end{array} \\
& \omega_{f}=-\underline{19425} \mathrm{tulkg} \\
& \delta \dot{Q}=0 \\
& \Delta u=\sigma v \Delta T \\
& =0.917\left(48 q_{1}-293\right) \\
& \Delta u=140 \cdot 6 \mathrm{k} 51 \mathrm{~kg}
\end{aligned}
$$

poly tropic process
workdonc

$$
\begin{aligned}
& \text { Pf } \frac{\text { Mf }}{n-1}\left(P+v_{1}-p_{2} V_{2}\right) \\
& -\frac{n-1}{m} R \frac{\left(T_{1}-T_{0}\right)}{n-1} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right) \frac{n-1}{n} \\
& T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}} \frac{1025-1}{1-25}\right. \\
& =293\left(\frac{6}{11}\right) \\
& =293\left(\frac{6}{1}\right)^{0.2} \\
& =419.27 \\
& w_{f S}=\frac{n}{n-1} R\left(T_{1}-T_{2}\right) \\
& =\frac{1.25}{1.25-1}(298-419.2) \\
& =-181097 \mathrm{~kJ} / \mathrm{kg} \\
& \delta Q=\delta \omega+d h \\
& =-180.09+C P\left(72-7_{1}\right) \\
& =481.09+1.005(419.2-293) \\
& =-54.259 \mathrm{~kJ} / \mathrm{kg} \\
& \Delta_{u}=c_{v} d T \\
& =0.712(72-72) \\
& =0.717(\pi \times 9192.2-293) \\
& \Delta u=2795.726
\end{aligned}
$$

unit -3
second law of Thermody namie

What is disoription
2 imitation s of first law and essence of second 12ω

1) Alto firstlace in every cyclic process work is completely converted into heat or heat is completely converted into work. Th natural process work is not completly converted into heat.
2) Potiential energy is transformed into $k \cdot E$ are K.E can be transformed into PR. PE ante converted into KE But reverse is not torus.
3) Heat flows from hot to cold are from cold to hort. Heat flows from hot to cold but reverse is not true
4) Gas expense from higher pressure to lower pressure are form low pressure to hish pressure. Hish pressure gas will expend tow pressure pressure but revers is not true
5) The spafentuis process can beveversc but they will be not reverse automatically they require some external source for reverse process.. All this examples sajust that they are some limitation on the aplication of first law of thermodynamics
D The law does not specifi the direction of process under consideration
6) There is limitation on the converstion of one form of energy in to another.
part of heat supped to a heat ensme may be converted in to work but part of heat must be rejected to the $\sin k 0$. This limitations form the basis of secondlaw of thermodynamics.

* kelvin Planck statement:-
kelvin planck statement it is imposible to construe an engine working on cyclic process whose sole purpose is to convert all the heat suplic in two equalent of work.
such an engine Gill afcouse not wildly the first law of thermodynamics but it is not possible to have hundred present apiest engine in vie of the imitations expressed by second lac of themodyanamics $A \subset$ to ch path of heat drawn from heat source must be rejected to the rower temperafure reserviouk
\# clausius statement? It is imposiole to construct a heat pump which is operating a cycle will produce \$o effect other than the transfer of heat from low temperatir body to a hish temperature body.
(on

Heat cart it self flow from a colder body to hotertoody
performense of heat ensme and reverse heat engine.

Heat pump(or)refr rater
Hot reservoir
teat ramp or refrigerator

Heat engine: Heat ensime is used to produce the maximum work transform from a given positive heat transform

$$
\text { Efferinency }=\frac{\omega \cdot D}{\text { heat suplied }}=\frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{T_{1}-T_{2}}{T_{1}}
$$

Refrigerator: when the purpose is ${ }^{\text {sd }}$ to achive maximum from the cold reservoir the measure of success is called the coefficient of pera
mane

$$
\begin{aligned}
& \text { Less is called the cop ref }=\frac{\text { refrigerator effect }}{\text { work Done }} \\
& \begin{aligned}
(\text { cop }
\end{aligned} \\
&=\frac{Q_{2}}{Q_{1}-Q_{2}}=\frac{T_{2}}{T_{1}-T_{2}}
\end{aligned}
$$

Heat pump:- It is defied as the ratio of heat transform to hot reservoir to work transform to the peat pump.

$$
(\text { Cop) })_{\text {Heat pump }}=\frac{\text { Heat Cffect }}{C \operatorname{CoD}}=\frac{Q_{1}}{Q_{1}-Q_{2}}=\frac{T_{1}}{T_{1} 7_{2}}
$$

Carnot cycle:-

The askimptions made for discritimg the carnot eyrgathe are as follows

1) The pistion moving in a cycinder does not dele any friction during motion.
2) The wall of piston and cycimder are consideras perfect insulakores of heat
3) The transform of heat does not effect the temperature of source are sink
4) working medium is a perfect gas
5) comphreson and extenseon are reversible
process 1-2: Hot energ is sullied. He
Heat isar is taken fluid expense iso thermally at temperature t_{1}
${ }^{7}$ process 2-3:- The fluid expen se adiabatic all. temperature falls from t_{1} to t_{2}
Process 3-4:- Heat Q_{2} flows from fluid and compreset isothermally
process 4-1:- compreshon is continued adiduatica temperature is raised from t_{2} to t_{1}

$$
\begin{aligned}
\text { Thermal efficiency }= & \frac{\text { work Done }}{\text { heat suplied }}=\frac{Q_{1}-Q_{2}}{Q_{1}} \\
& =1-\frac{Q_{2}}{Q_{1}} \\
& 3 \text { Th }=1-\frac{T_{2}}{T_{7}}
\end{aligned}
$$

The carnotcyrcle canst be performed imp practice because of following of reasons

1. It is imposible to perform a friction les s process
2. It is an imposible to transfer the heat without temperature potential
3. Iso thermal process can be acheive on my affiche piston moves very slowly to allow heat transfer so that the temperature reamims constant. Adiabatic process can be achieve only if the piston moves as fast as possible so that the heat transform is meglible due to very short time avaiable. The isothermal adiabatic process takes place slurimg the same stroke the fore the piston as to move very Slowly for path of the stroke and it has to move very fast during the reaming stroke. The variation of frrotion of the piston dermis the same stroke is not possible

PRMI = per pecfual motion machime-2 Heat

$$
\begin{aligned}
& \text { source } \\
& \text { la }=60 \mathrm{~kJ} \\
& \text { HGt } \rightarrow \text { manet }=100 \mathrm{~kJ}
\end{aligned}
$$

violation of II lac
caret theorem:-

IIstuse:-

Stage: I7

Q A hear engine reques heat at the rate of $1500 \mathrm{~kJ} / \mathrm{him}$ and gives an output of 8.2 kw . Defermin Ci) Thermal efficiency. (ii) The rate of heat rejection.
source

$$
\begin{aligned}
& \frac{a_{1}}{}=1500 \mathrm{~kJ} / \mathrm{mim} 70 \\
& \left(H_{1} E\right) \rightarrow \omega=8.2 \mathrm{kw} \\
& \frac{\downarrow a_{2}}{(\sin k}=?
\end{aligned}
$$

$$
\begin{aligned}
& \text { Given data } \\
& \begin{aligned}
& Q_{1}=1500 \mathrm{~kJ} / \mathrm{mim} \omega=8.2 \mathrm{kw} \\
&=\frac{1500 \times 1000}{60} \omega=8.2 \times 10^{3} \mathrm{~J} / \mathrm{s} \\
& Q_{1}=25 \times 10^{3} \mathrm{~J} / \mathrm{s}
\end{aligned} \\
& \begin{aligned}
1 \pi h & =\frac{\omega \cdot D}{H-5}=\frac{8.2 \times 10^{3}}{25 \times 10^{3}} \\
\text { nTh } & =32.87 \%
\end{aligned}
\end{aligned}
$$

(2) $Q_{1}-Q_{2}=\omega$

$$
\begin{aligned}
Q_{2} & =Q 1-\omega \\
& =25 \times 10^{3}-8.2 \times 10^{3} \\
& =16 \times 8 \times 10^{3} \mathrm{~J} / \mathrm{s} \\
Q_{2} & =16.8 \mathrm{kN}
\end{aligned}
$$

What is the hishest possible therotical efficiency of a heat engine operating with the hot reservoir gases at $2100^{\circ} \mathrm{C}$ che the cooims rate available iss $15^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mu_{1} & =1-\frac{T_{2}}{T_{1}}=\frac{T_{1}-T_{2}}{T_{1}} \\
& =1-\frac{15+273}{2100+273} \\
\mu_{1} & =87.8 \%
\end{aligned}
$$

4 carnot macle refrigerator 250 k and 300 k .

$$
(C o p)_{R}=\frac{\tau_{2}}{T_{1}-\tau_{2}}=\frac{250}{300-250}=5
$$

A cyck heat engine does 50 kJ or work of cycle of the efficiency of the heat engine 75%
a) $16 \frac{2}{3} \mathrm{~kJ}(B) 33 \frac{1}{3} \mathrm{~kJ}$ (c) $37 \frac{1}{2} \mathrm{~kJ}$ (D) $66 \frac{2}{3} \mathrm{~kJ}$.

$$
\begin{gathered}
\text { Efficiency }=\frac{\text { workdonc }}{\text { heat supplied }}=\frac{\omega}{Q_{1}} \\
Q_{1} 75=\frac{50}{Q 1} \\
\Rightarrow Q_{1}=\frac{50}{0.75}=\frac{200}{3} \\
\operatorname{col} D=Q_{1}-Q_{2} \Rightarrow 50=\frac{200}{3} \cdot-Q_{2} \\
Q_{2}=\frac{50}{3}=16.66 k J=16 . \frac{2}{3} \mathrm{~kJ} \\
\text { carnot cycle is having an }
\end{gathered}
$$

A carnot cycle is houmg an efficiency of 0.75. If the temperature of high temperature freservir is $T 2 \tau$. What is the temperature of low temperature reseruioar

$$
\text { (A) } \begin{aligned}
& 23^{\circ} \mathrm{C}(B)-23^{\circ} \mathrm{C}(\mathrm{C}) 0^{\circ} \mathrm{C}(\mathrm{~B}) 250^{\circ} \mathrm{C} \\
& \text { Efficion cy (g) }=1 \frac{1}{\mathrm{~T}} \frac{T_{2}}{T_{1}} \\
& 0.75=1-\frac{T_{2}}{10000} \\
& 0.75=\frac{1000-T 2}{1000} \Rightarrow 250 \\
& \Rightarrow 1000 \times 0.75=1000-T 2 \\
& 750=1000-750 \\
& 250 \mathrm{~K}=200+273 \\
&=473
\end{aligned}
$$

$$
\begin{aligned}
& 0.75=\frac{1-\frac{\tau_{2}}{10000}}{0.75}=\frac{1000-T_{2}}{1000}=250 \mathrm{k}
\end{aligned}
$$

$$
=273-250
$$

$$
=-23^{\circ} \mathrm{C}
$$

Find the cop and heat transfer rate in the condemn of a refrigerator $\mathrm{im} \mathrm{kJ} / \mathrm{hr}$ which has a refrigerate capacity of $12000 \mathrm{KJ} / \mathrm{hr}$ when power input in 007 sk

A domestic food refrigerator maintaince a temperature of $12^{\circ} \mathrm{C}$ the ambrent temperature $35^{\circ} \mathrm{C}$ If heat leaks into the freezer a ta coniine rate of $2 \mathrm{~kJ} / \mathrm{s}$-determine the least power hecsssa pump this heat out cont inciously

$$
\begin{aligned}
\frac{Q_{2}}{T_{2}} & =\frac{Q_{1}}{T_{1}} \\
Q_{1} & =\frac{T_{1}}{T_{2}} \times Q_{2} \\
& =\frac{308}{261} \times 2 \\
& =2.36 \mathrm{~kJ} / \mathrm{s} \\
\omega & =Q 1-Q_{2} \\
& =2.36-2=0.36 \mathrm{kw}
\end{aligned}
$$

$77 \cdot 2$

$$
\begin{aligned}
& \omega=Q-Q 2 \\
& =2.36-2=
\end{aligned}
$$

A carnot cyde operates 6,60 source and sink temper atari of $250^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ of the system recieves 90 kJ from the source. Find
(i) Efficiency of the system m? no
(ii) the networle transfer
(ii) Heat rejected to sink

$$
\begin{aligned}
& \pi=250+273=5230 \mathrm{k} \\
& T_{2}=-15+273=258 \mathrm{k} \\
& g_{1}=90 k J \\
& =1-I_{3}=1-\frac{258}{523}=0.506 \\
& =50.6
\end{aligned}
$$

$$
\begin{aligned}
& Q_{2}=12000 \mathrm{~kJ} / \mathrm{hr} \\
& \text { Power }=0.75 \mathrm{~kJ} / \mathrm{s} \\
& \begin{array}{l}
\text { power }=0.75 \times 3600 \frac{\mathrm{~kJ}}{\mathrm{hr}} \\
\text { cop }=R . E
\end{array} \\
& c^{\circ}=\frac{R \cdot \varepsilon}{\omega .0}=\frac{12000}{0.75 \times 60 \times 60} \\
& =4.44 \\
& Q_{1}-Q_{2}=\omega \\
& Q_{1}=Q_{2}+\omega \\
& =12000+0.75 \times 60 \times 60 \\
& Q_{1}=14700 \mathrm{~kJ} / \mathrm{hr}
\end{aligned}
$$

$$
\begin{aligned}
& H=\frac{\omega \cdot 1}{H \cdot S}=\frac{\omega \cdot 1}{Q 1} \\
& \omega=H \quad X Q_{1}=0.506 \times 90=45.5 \\
& \omega=Q_{1}-Q_{2} \\
& Q_{2}=Q_{1}-\omega=90-45.5-44.46
\end{aligned}
$$

Foort
Nojink
unl-II Introduction
second law of thermodynamics:-
Entropy:-

$$
\frac{F G}{T}=d s
$$

The cyclic integral of the quantity $\frac{t^{\top}}{\tau}$ for reversit cycle $=0$. supers that the quantity $\frac{f Q}{\tau}$ is a point function.

$$
\int_{1}^{2}\left(\frac{f g}{T}\right)=\int_{1}^{2} d S
$$

where ' \bar{S} is entrophy

$$
\begin{aligned}
& \left(\frac{f(G)}{T}\right)_{\text {Yew }}=S 2-S 1 \\
& =d S
\end{aligned}
$$

Definition of entropy:-
The amount of heat it is ord substance and the degree to which State known as entropy

$$
\int_{2}^{1}\left(\frac{\delta Q}{T}\right)_{\text {path B eu }}=\int_{2}^{1}\left(\frac{\delta Q}{T}\right)_{\text {path }}^{(\text {rev }}
$$

$\int \frac{f q}{T}$ is independent of the path

- A property
- A point function (Exact differential)

$$
S_{2}-S_{1}=\int_{1}^{2}\left(\frac{f g}{T}\right) r e u
$$

$$
\begin{aligned}
& \oint \frac{f a}{5}=0 \\
& 1-A-2-B-1 \\
& \oint\left[\frac{f g}{T}\right]_{1}=\int_{2}^{2}\left[\frac{f a}{T}\right]+\int_{\text {pathareu }}^{1}\left(\frac{f q}{T}\right) \\
& f \mid=a \\
& \text { Smilaily path }
\end{aligned}
$$

Reversible adiabatic process

$$
\begin{aligned}
& f_{Q}=0 \\
& s_{2}-s_{1}=0 \\
& S_{z}=s_{1}
\end{aligned}
$$

$V \cdot \operatorname{ImP}$:
Entropy - Changes for an ideal gas olurim 9 process:-

$$
f q-f w=d u
$$

($\left.f_{Q}\right)_{\text {rev }} f_{\omega}=d u$
Dividing the above expression by' T

$$
\begin{aligned}
& {\left[\frac{f_{q}}{T}\right]_{\mathrm{reu}}-\left[\frac{F_{V}}{T}\right]=\frac{d u}{T}} \\
& d s=\frac{f u}{T}+\frac{d u}{T} \\
& d s=\frac{P d v}{T}+\frac{d u}{T}>0 \\
& T d s=P d u+d u-D(2) \\
& T d s=P d u+d(H-P u) \\
& =P d u+d H-P d u-v d P \\
& T d S=d H-v d P \\
& d s=\frac{d H}{T}-\frac{v d P}{T}-(3)
\end{aligned}
$$

$$
t=u+p v
$$

Fintegratimg ear (s) and (3)

$$
\begin{aligned}
& \text { egratimg ear © and (3) } \\
& s_{2}-s_{1}=\int_{1}^{2} \frac{P}{T} d v+\int_{1}^{2} \frac{d u}{T} \rightarrow \text { (4) } \\
& s_{2}-s_{1}=\int_{1}^{2} \frac{d H}{T}=\int_{T}^{2} d p \rightarrow \text { (5) }
\end{aligned}
$$

For a perfect gas

$$
\begin{aligned}
& d u=m a v d T \\
& d H=M c P d T \\
& P V=M P T \\
& \frac{P}{T}=M R \\
& \frac{N}{L}=\frac{M R}{P}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fromeq(} 0 \\
& d s=\frac{m R}{V} d r t \frac{m e v d T}{T}
\end{aligned}
$$

$$
\begin{aligned}
& s_{2}-s_{1}=M R \int_{1}^{2} \frac{d v}{v}+m a v \int_{1}^{2} \frac{d T}{7} \\
& s_{2}-s_{1}=m R \operatorname{tn} \frac{v_{2}}{v_{1}}+m c v \ln \frac{72}{T i} \rightarrow(6)
\end{aligned}
$$

from eq (3)

$$
\begin{aligned}
& d s=\frac{m c P d T}{T}-\frac{m R}{P} d P \\
& s_{2}-s_{1}=m c p\left\{_{\{ }^{2} \frac{d T}{T} m R \int_{1}^{2} \frac{d P}{P}\right. \\
& s_{2}-s_{1}=m c p \ln \frac{T_{2}}{T_{r}}-m R \ln \frac{T_{2}}{T_{T}} \rightarrow(2)
\end{aligned}
$$

(1) constant volume process:fromea (6)

$$
S_{2}-S_{1}=\operatorname{mov} \ln \frac{T_{2}}{T_{1}}
$$

(2) constant pressar process Promea (2)

$$
S_{2-S_{1}}=m c_{p} \ln \frac{T_{2}}{\pi_{1}}
$$

(3) Isothermal process:-

From eq (6)

$$
\begin{aligned}
S_{2}-S_{1} & =-m R \ln \frac{P_{2}}{P_{1}} \\
S_{2}-S_{1} & =m R \ln \frac{P_{1}}{P_{2}}
\end{aligned}
$$

From eq (6)

$$
\delta_{2}-\delta_{1}=m R \ln \frac{V_{2}}{v_{1}}
$$

(4) Reversible adiabatic process

$$
\begin{aligned}
& \delta_{2}-\delta_{1}=0 \\
& \delta_{2}=\delta_{1}
\end{aligned}
$$

(5) polytropic proces

$$
\begin{aligned}
Q_{1}-2 & =\frac{\sqrt{-n}}{-1} \times W_{0} D \cdot d a r m g ~ p o r y t r o P C \\
Q_{1}-2 & =\frac{\sqrt{-n}}{r-1} \times P d u \\
\text { But } & d s \\
& =\frac{f Q}{T} \\
d s & =\frac{P r-n}{T-1} \times \frac{P}{T} d V
\end{aligned}
$$

$$
d s=\frac{\gamma-n}{\gamma-1} m R \frac{d v}{v}
$$

Integrating above expyesston

$$
\text { polytropic }\left\{\begin{array}{l}
s_{2}-s_{1}=\frac{\sqrt{\prime-n}}{\gamma-1} \text { mR } \ln \frac{v_{2}}{v_{1}} \\
s_{2}-s_{1}=\frac{\sqrt{-D}}{1-n} e v \ln \frac{T_{2}}{T_{1}}
\end{array}\right.
$$

Formulas:-
constant t volume :- $S_{2}-S_{1}=m c r l n \frac{T_{2}}{T}$
constant pressure:- $S_{2}-S_{1}=$ mad in $\frac{T_{2}}{T_{1}}$
Constant temperature: : $S_{2}-S_{1}=m p \ln \frac{V_{2}}{V_{2}}(o r) m R \ln \frac{P_{1}}{P_{2}}$
Reversible adiabatic:- $S_{1}=S_{2}$
paytropic process :- $s_{1}=s_{2}=\frac{\gamma^{2}-n}{\gamma-h} \cdot m \beta \ln \frac{V_{2}}{V_{1}}$
(cr)

$$
s_{1-s_{2}}=\frac{\gamma-n}{1-n} c u \ln \frac{T_{2}}{\pi}
$$

Forever sible \rightarrow It is nature

* reversible \rightarrow It is ideal

Ex:-(c) Frictionless relativemation
(2) Expansion \& compression of sting (3) pplytropic, isothermal expansion and compression
Reasons for mrcuersibility:-
1 Lack of thermodynamic equilibrium dur mg the process
2. Instolvement of dispiative effect during the process
(a) Heat transfer through a finite temperature difference.
b) pree expransion

Cal. Brakimg of rotating fly wheel Col padde wheel wark.
Arilabre enorgy:- AE

hemt $=$ (T) Aryanoospheric Gempartare

$$
\begin{aligned}
& Q_{1}=A \cdot E+4 \varepsilon \\
& \text { Bicycle }=1-\frac{7_{2}}{T_{1}} \\
& T_{\text {max }}=1-\frac{T_{0}}{\tau_{1}} \\
& \begin{array}{l}
\omega_{m a x}=\left(1-\frac{T O}{T_{1}}\right) Q, \\
u_{\mathrm{m}}=\omega \cdot
\end{array} \\
& \text { uEh }=\frac{\text { W.D }}{H \text { HS }} \\
& \cos =\left(1-\frac{T_{0}}{T_{1}}\right) a_{1} \\
& d_{w_{\max }}=\left(\frac{T 1-T 0}{T}\right) d 91 \\
& d_{\text {max }}=d Q_{1}-\frac{\text { Tod }}{\pi} q_{1}=A \cdot E \\
& \int_{x}^{y} d a_{m a x}=\int_{x} d a_{1}-\int_{x}^{T_{1}} \frac{T_{0}}{T_{1}} \\
& \text { Wmax }=\frac{(s x y)}{\operatorname{sics}}-T_{6} \frac{(s y-s x)}{H+/ E} \\
& V \cdot E=20(S y-S x)^{H}
\end{aligned}
$$

Availabilify:-
Totar work - pdu work
Haximum usefal work that in obtaimabce im a process which the system comes to equilibrui

Anilability - for study flow process

$$
\omega=f_{1}-T_{0} s_{1}+\left(\frac{m v_{1}}{2}+m g z_{1}\right)-\left(H_{0}-t_{0} s_{0}+m g z_{0}\right)
$$

Alailabity in a non flow 1 system :-

$$
\begin{aligned}
& A=\omega_{m a x}=E-E_{0}+p_{0}\left(v-v_{0}\right)-T_{0}\left(s-s_{1}\right) \\
& S_{Q}=\delta_{\omega}=d E(d u) \\
&=\left(u+\frac{m v^{2}}{2}+m g z\right)-\left(u_{0}-m g z o\right)
\end{aligned}
$$

veglectms $K \cdot E \& P \cdot E$

$$
\begin{aligned}
A & =\left(a-u_{0}\right)+p_{0}\left(v-v_{0}\right)-T_{0}\left(s-s_{0}\right) \\
& \left.=\left(u+p_{0}-T_{0} s\right)-u_{0}+p_{0}-v_{0} S 0\right) \\
& =\phi-\phi_{0} \\
A & =\phi-\phi_{0}
\end{aligned}
$$

problem s on entropy:-
(1) Dorms summer to cos I water for drutimg purpose of ice at $0^{\circ} \mathrm{C}$ is mixed with $5 k 9$ of waterat $27^{\circ} \mathrm{C}$. The system is opened to atmosphere which has a pressure of Ibar-calculate the temperature of mixture and change in entropy for the spontaneous process.

$$
\text { Take cp water }=4.18 \mathrm{~kJ} / \mathrm{kgk}
$$

Lated heat LH ICe $=335 \mathrm{~kJ} / \mathrm{kg}$

$$
0_{\min }=27_{\max }
$$

Heat gamed by ice $=$ heat losed by water
Energy balance d equation

$$
\begin{aligned}
& \text { milit } \mathrm{cpo}(T-0)=\text { mw } C P \omega(27-T) \\
& \text { mass of ice }=1 \mathrm{~kg} \\
& \text { L.H ice }=335 \\
& \text { mass of ice }=1 \times 4.18 \\
& 1 \times 335+1 \times 4.18(T-0)=5 \times 4.18(27 \\
& T=9.142^{\circ} \mathrm{C}
\end{aligned}
$$

charec in entropy of ice
(AS)ice = Entropy change due to melting of lee at constant temperatlire
Entropy charge due to healing of melting of $i c c f o r m$?

$$
\begin{aligned}
& S=\frac{d \theta}{T}=\frac{Q 1}{T}+m c p \ln \frac{T_{2}}{T} \\
& Q=m L=\frac{1 \times 335}{O+273}+1 \times 4 \cdot 18 \ln \frac{273+9.147}{273+0} \\
& (\Delta S) I c C=1.36 \mathrm{kD} / \mathrm{C}
\end{aligned}
$$

xi change in entropy of water
$A_{s}=$ change due to cooling of water from 27° tor. $142^{\circ} \mathrm{C}$

$$
\begin{aligned}
\Delta S & =m c p \ln \frac{T_{2}}{T_{1}} \\
& =5 \times 4.18 \times \ln \frac{273+9.142}{273+0} \\
\Delta S & =-1.282 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
\text { change in entropy } & =C \Delta s) \text { ice }+(\Delta s) \text { water } \\
& =1.364-1.282 \\
& =0.082 \mathrm{~kJ} / \mathrm{k}
\end{aligned}
$$

$\underset{\text { Icetwater } \rightarrow}{\text { Intermediate }}$ temperature
In order to check the validity of second lacu of thermodynamics of $m, ~ \mathrm{~kg}$ of water at temp peratire in mixed with $\mathrm{mz} \mathrm{k} g$ of arter at tam KT
Determine the change in entropy of the culveres and Find an expression for the same also prev that the change m necessary positive
Heat closed by Mikg of at $T_{1} \mathrm{M}=$ is eat gained 64 m_{2} of water at $T_{2}^{\circ} \mathrm{C}$

$$
\begin{gathered}
M_{1} C_{P_{\omega}}\left(T_{1}-T_{P} P\right)=m_{2} C_{P_{\omega}}\left(T_{f}-T_{2}\right) \\
T_{f}=\frac{m_{1} T_{1}+m_{2} T_{2}}{m_{1}+m_{2}}
\end{gathered}
$$

change im entropy
mikg - Ti ΔT_{f}

$$
\begin{aligned}
& \left(\Delta s_{1}\right)=m_{1} c_{1} \ln \frac{T_{f}}{T_{1}}=m_{1} c p \ln \frac{m_{1} T_{1}+m_{2} T_{2}}{T_{1}\left(m_{1}+m_{2}\right)} \\
& \left(\Delta S_{2}\right)=m_{2} \operatorname{cp\operatorname {ln}\frac {T_{5}}{T_{2}}=m_{2}\operatorname {cpln}\frac {m_{1}\pi _{1}+m_{2}T_{2}}{T_{2}(m_{1}+m_{2})}} \begin{array}{l}
(\Delta S) \text { universe }=\Delta s_{1}+\Delta S_{2}
\end{array}, \quad \text {-n }
\end{aligned}
$$

$=m_{1} c p \ln \frac{m_{1} 7_{1}+m_{2} T_{2}}{T_{1}\left(m_{1}+m_{2}\right)}+\frac{m_{2} 7_{2}+m_{1} T_{1}}{T_{2}\left(m_{2}+m_{1}\right)}$
$m_{1}=m_{2}=m$

$$
\begin{aligned}
& =\operatorname{mop}\left[\ln \frac{T_{1}+T_{2}}{2 T_{1}}+\ln \frac{\pi+T_{2}}{2 T_{2}}\right] \\
& =m c \ln r T_{1}+T_{2}
\end{aligned}
$$

$$
=m c^{=} \ln \left[\frac{T_{1}+T_{2}}{2 T_{1} .2 T_{2}}\right]
$$

$$
=\operatorname{mcRln}\left(\frac{T_{1}+T_{1}}{2 \sqrt{T_{1} T_{2}}}\right)
$$

$$
=2 \cdot \operatorname{cop} \ln \frac{\left(2 \sqrt{T_{1} T_{2}} \frac{T_{1}+T_{2}}{2 \sqrt{T_{1} T_{2}}}\right.}{=2}
$$

$$
\Delta s=2 \cdot m c p \sin \frac{T_{1}+T_{2}}{2 \sqrt{T_{1} T_{2}}}
$$

The value of entropy is positive

$$
\Delta s=2 m c p \ln \frac{T_{1}+T_{2}}{2 \sqrt{T_{1} T_{2}}}
$$

$\ln \frac{T_{1}+T_{2}}{2} \rightarrow$ Ansithrnaticmean $2 \sqrt{T_{i} T_{2}} \rightarrow$ Gieometric mean

$$
\begin{aligned}
& \frac{T_{1} t T_{2}}{2}>\text { Arthmaticmean AmsM } \\
& \sqrt{T_{1} T 2} \rightarrow \text { Geometricmean } \\
& T_{1}=20 \text { T2 }=30 \\
& \frac{T_{1}+T_{2}}{T 2}=\frac{50}{2}=25 \\
& \sqrt{20} \times 30=\sqrt{600}=24.49
\end{aligned}
$$

The value is tve:

Entropy's ecuer increasims

Shew that when a perfect gas changes from state PVITI to another state $P_{2} N_{2}, T_{2}$ the in crack in enfropy per unit mass is given by

$$
\begin{aligned}
& S_{2}-s_{1}=c_{v} \ln \frac{p_{2}}{p_{1}}+c_{p} \ln \frac{v_{2}}{v_{1}} \\
& \delta_{2}=d e n t p d v \\
& \frac{\delta_{9}}{T}=\frac{d u}{T}+p d v \\
& d s=\frac{m c v d T}{T}+\frac{d v}{v} \\
& \delta_{2}-s_{1}=m a v \ln \frac{T_{2}}{T_{1}}+m R \ln \frac{v_{2}}{V_{1}}
\end{aligned}
$$

$$
\frac{P V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$\frac{T_{2}}{T_{1}}=\frac{P_{2} v_{2}}{P_{1 V_{s}}} \rightarrow$ peplacedins formula

$$
s_{2}-s_{1}=\operatorname{cv} \ln \frac{P_{2} v_{2}}{P_{1} v_{1}}+m R \ln \frac{v_{2}}{v_{1}}
$$

$$
\left.S_{2}-S_{1}=C V_{\ln } \frac{P_{2} v_{2}}{P V_{1}}+C C P-C V_{1}\right) \ln \frac{v_{2}}{v_{1}}
$$

$$
=a \ln \frac{P_{2}}{P_{1}}+\operatorname{culn} \frac{v_{2}}{V_{1}}+C P d n \frac{v_{2}}{V_{1}}-C u \ln \frac{v_{2}}{V_{1}}
$$

$$
S_{2}-S_{1}=c \ln \frac{p_{2}}{p_{1}}+c p \ln \frac{V_{2}}{V_{1}}
$$

(ii) Index $n^{\prime}=$?
(1) constant volume
(2) $P v^{n}=C$
(3) $T_{1}=T_{3}$
 entropy formula

Ac. to problem $\rightarrow S_{2}-S_{1}=S_{3}-S_{2}$

$$
\begin{aligned}
& C v \ln \frac{T_{3}}{T_{1}}=\frac{C p-n c v}{1-n} \cdot \ln \frac{T_{1}}{T_{2}} \\
& C v \ln \frac{T_{2}}{T_{1}}=\frac{C p-n c u}{n-1} \ln \frac{T_{2}}{T_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& S_{2}-s_{1}=C \operatorname{lin} \frac{T_{2}}{T_{1}} k J / k g k \rightarrow \infty \\
& S_{3}-S_{2}=\frac{V-n}{1-n} C_{v i n} \frac{T_{3}}{T_{2}} \\
& V=\frac{C P}{C V} \\
& =C V \frac{C P}{\frac{C V}{1-n}} \ln \frac{T_{3}}{T_{2}} \\
& \text { S3-S2 }=\frac{c p-n c V}{V^{n}} \ln \frac{T_{1}}{T_{2}}
\end{aligned}
$$

$$
\begin{array}{l|l}
c v=\frac{c p-n c v}{n-1} & \frac{c p}{c v}=r \\
c v(n-1)=c p-n c v & c p=r c v \\
n c v-c v=c p-n c v & 2 n c v=\sqrt{c u t} c v \\
n c v+n c v=c p+c v & 2 n=\sqrt{t 1} \\
2 n c v=c p+c v & n=\frac{\sqrt{4}}{2}
\end{array}
$$

(iii)

$$
\text { (1) constant volume }=\mathrm{CV}\left(T_{2}-T_{1}\right)
$$

(2) polytropic $=C_{V}\left(T_{2}-T_{1}\right)$
polyeropic:

$$
\begin{aligned}
& Q_{2}-3=\left(u_{3}-4_{2}\right)+w_{2}-3 \\
& \delta_{Q}=\delta_{u}+\delta_{\omega} \\
& c_{2}-3=\frac{p_{2} v_{2}-p_{3} v_{3}}{n_{1}-1} \\
& \omega_{2}-3=\frac{R\left(T_{2}-7_{3}\right)}{n-1} \\
& Q_{2}-3=C_{v}\left(T_{3}-T_{2}\right)+\frac{R\left(T_{2}-T_{3}\right)}{n-1} \\
& =\left(T 2-T_{3}\right)\left[\frac{R}{n-1}-C V\right] \\
& =\left(12-T_{3}\right)(\mathrm{CP}-\mathrm{cv} \\
& =\left(T_{2}-T_{3}\right)\left[\frac{C P-C V}{\frac{V+1}{2}-1}-C V\right] \\
& =\left(T_{2}-T_{3}\right)\left[\frac{2\left(\frac{\sqrt{2}-c v)}{2}-c v\right]}{r+1-2}\right] \\
& =\left(T_{2}-T_{3}\right) \frac{\left(\begin{array}{l}
Y+1-2 \\
2 C P-2 C V-V C V+C V
\end{array}\right]}{\gamma(-1} \\
& =\left(T_{2}-T_{3}\right)\left[\frac{2 c p-c v-V C V}{V-1}\right] \\
& =\left(T_{2}-T_{3}\right)\left[\frac{2 r c v-c v-r c v}{r-1}\right] \\
& =\left(T_{2}-T_{3}\right)\left(\frac{\mathrm{rcv}-c V}{\sqrt{-1}}\right) \\
& \left.=c T_{2}-T_{3}\right)\left(\frac{c v(v-1)}{v-1}\right) \\
& \therefore C V\left(T_{2}-T_{3}\right) \\
& a_{2}-3=C V\left(T_{2}-T_{1}\right) \\
& \therefore-Q_{1}-2=Q_{2}-3
\end{aligned}
$$

$$
\begin{array}{c|c}
c v=\frac{c p-n c v}{n-1} & \frac{c p}{c v}=r \\
c v(n-1)=c p-n c v & c p=r c v \\
n c v-c v=c p-n c v & 2 n c v=\sqrt{c u}+c v \\
\text { ncv+ncv }=c p+c v & 2 n=\sqrt{t 1} \\
2 n c v=c p+c v & n=\frac{\sqrt{+1}}{2}
\end{array}
$$

(iii)

$$
\text { (2) constant volume }=C_{V}\left(T_{2}-T_{1}\right)
$$

$$
\text { (2) polytropic }=c_{v}\left(T_{2}-T_{1}\right)
$$

polyeropic:

$$
\begin{aligned}
& Q_{2}-3=\left(u_{3}-4_{2}\right)+w_{2}-3 \\
& \delta_{Q}=\delta_{a}+\delta_{\omega} \\
& w_{2}-3=\frac{p_{2} v_{2}-p_{3} v_{3}}{n_{1}-1} \\
& \omega_{2}-3=\frac{R\left(T_{2}-7_{3}\right)}{n-1} \\
& Q_{2}-3=C_{v}\left(T_{3}-T_{2}\right)+\frac{n-1}{n-1} \frac{\left.T_{2}-T_{3}\right)}{n-1} \\
& \begin{array}{l}
=\left(T-T_{3}\right)\left[\frac{R}{n-1}-C V\right] \\
=\left(T_{2}-T_{3}\right)(p-1
\end{array} \\
& =\left(T_{2}-T_{3}\right)(p-a v \\
& =\left(T_{2}-T_{3}\right)\left[\frac{C P-C V}{\frac{V+1}{2}-1}-C V\right] \\
& =\left(T_{2}-T_{3}\right)\left[\frac{2\left(\frac{2(p-c v)}{r}-c v\right]}{r+1-2}\right] \\
& \begin{array}{l}
=\left(T_{2}-T_{3}\right)\left(\begin{array}{l}
V+1-2 \\
2 C P-2 C V-V C V+C V
\end{array}\right] \\
=\left(T_{2}-T_{3}\right)
\end{array} \\
& =\left(T_{2}-T_{3}\right)\left[\frac{2 c P-c V-V C V}{V-1}\right] \\
& =\left(T_{2}-T_{3}\right)\left[\frac{2 \sqrt{c v}-c v-r c v}{r-1}\right] \\
& =\left(T_{2}-T_{3}\right)\left(\frac{r c v-c V}{\sqrt{-1}}\right) \\
& =\left(T_{2}-T_{3}\right)\left(\frac{V v(\sqrt{-1})}{\frac{V-1}{V-1}}\right) \\
& =\mathrm{CV}\left(T_{2}-T_{3}\right) \\
& a_{2}-3=C V\left(T_{2}-T_{1}\right) \\
& \therefore Q_{1}-2=Q_{2}-3
\end{aligned}
$$

(0. $0.2 \mathrm{~m}^{3}$ of air at 1 bar and $60^{\circ} \mathrm{a}$ is compressed to $0.05 \mathrm{~m}^{3}$ according the law PVI. $3=c$ - Now the heat added at constant volume until lifts pressure is boar calculate the change in entropy m each process undergoes

$$
p_{V} 1 \cdot 3=k
$$

constant volume process S

$$
\begin{aligned}
& s_{2}-s_{1} \& S_{3}-s_{2} \\
& \text { mass of air }=\frac{P_{1} V_{1}}{R T} \\
&=\frac{1 \times 10^{2} \times 0.2}{0.287 \times(273+60)} \\
& m=0.209 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{T_{1}}{T_{2}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma}{n}} \\
& T_{2}=(273+60)(6.062) \\
& T_{12}=504.65 \mathrm{k}
\end{aligned}
$$

$$
s_{2}-s_{1}=m R \frac{r-n}{r-1} \ln \frac{T_{2}}{T_{1}}
$$

$$
=0.2092\left(\frac{1.4-1.3}{1.4-1}\right) \frac{0.287}{\frac{0.05}{0.2}}
$$

$$
s_{2}-s_{1}=-0.0208 k J / k 9
$$

$$
\begin{aligned}
53-52 & =\mathrm{mcv} \ln \frac{P_{3}}{P_{2}} \\
& =0.2 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& =0.709 \times 0.718 \ln \frac{10}{6.062} \\
53-52 & =0.0619 \mathrm{~kJ} / \mathrm{k}
\end{aligned}
$$

$$
S_{a}=\frac{\delta a}{T}
$$

Heat abosrbe $d=$ Area of Δt Areabfrectansle

$$
\begin{aligned}
& \text { Qapproximate }=\frac{1}{2}\left(S_{1}-S_{2}\right)\left(T_{2}-T_{1}\right)+\left(S_{1}-S_{2}\right)\left(T_{1}-0\right) \\
&=S_{1}-S_{2}\left(\frac{T_{2}-T_{1}}{2}+T_{1}\right) \\
& \begin{aligned}
Q_{\text {Approximats }} & =S_{1}-S_{2}\left(\frac{T_{1}+T_{2}}{2}\right) \\
S_{1}-S_{2} & =\frac{Q_{1} A p p 1}{T_{1}+T_{2}}
\end{aligned}=\frac{\text { Qappr }}{T M}
\end{aligned}
$$

(b) Initial condition $S \rightarrow$ TiV P_{1}

Fimal condition $S \rightarrow T_{2} V_{2} \mathrm{P}_{2}$

$$
\begin{aligned}
& A V_{1}=m R T_{1} \\
& V_{1}=\frac{m R T_{J}}{P_{1}} \\
&=\frac{0.25 \times 0.318(273+20)}{1 \times 10^{2}}=V_{1}=0.232 \mathrm{~m}^{3} \\
& T_{2}=T_{1} \times\left(\frac{P_{2}}{P_{1}}\right) \frac{n-1}{n} \\
&=(243+20)\left(\frac{8}{1}\right) \frac{0.25}{P_{125}} \\
& T_{2}=444.1 \mathrm{~K} \\
& V_{2}=V_{1}\left(\frac{P_{1}}{P_{1}}\right)^{1 / n}=0.232\left(\frac{1}{8}\right)^{\frac{1}{0.25}} \\
& V_{2}=0.439 \mathrm{~m}^{3}
\end{aligned}
$$

W. Durimg

$$
\begin{aligned}
\text { Paytropic } & =\frac{P_{1} v_{1}-P_{2} V_{2}}{n-1} \\
& =\frac{1 \times 10^{2} \times 0.232-8 \times 10^{2} \times 0.043}{1.25-1} \\
\text { w.D } & =-47.2 \mathrm{~kJ} \\
\text { (3) Heat transfer } & =r-n
\end{aligned}
$$

$$
\begin{aligned}
\text { transfer } & =\frac{r-n}{r-1} \times \omega . D \\
& =\frac{1.437-1.25}{1.437-1}(-47.2) \\
q & =20.19 \mathrm{~kJ}
\end{aligned}
$$

49. change in entropy

$$
\begin{aligned}
s_{2}-s_{1} & =\text { mev } \frac{f-n}{n-1} \text { in } \frac{p_{1}}{p_{2}} \\
& =0.25 \times 0.727 \times \frac{1.437-1.25}{1.25-1} \text { in } \frac{1}{8} \\
s_{2}-s_{1} & =-0.056 \mathrm{~kJ}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& s_{2}-s_{1}=\frac{\text { Gap }}{T m} \\
& s_{2-s_{1}}=\frac{-20.19}{\frac{293-1444.1}{2}} \\
& s_{2-s_{1}}=-0.0544 \\
& \text { Error }=\frac{0.0564-0.0544}{0.0564} \times 100 \\
& \therefore \text { Error }=3.546 \%
\end{aligned}
$$

Calculate the decrease in available energy when 25 kg water at $95^{\circ} \mathrm{C}$ on ix with 35 kg of water at $3 \mathrm{si}^{\circ}$ The pressure being taken as constant and the temperature of surrounding being $15^{\circ} \mathrm{C}$ CP of water $=4.2 \mathrm{~kJ} / \mathrm{kg}$
The available energy of a system is given by 25 kg

$$
\begin{aligned}
& \operatorname{mop} \int_{\frac{10}{T}}^{T}\left(1-\frac{T_{0}}{T}\right) d T \quad \frac{25 \mathrm{~kg}}{95^{\circ} \mathrm{C}} \\
& \left.(A-E)_{25}^{10}=25 \times 4.2 \int_{273+15}^{273+95} 1-\frac{273+15}{4}\right] d T \\
& =105(T-288 \ln T)^{368} \\
& =105\left(368-288-288 \ln \frac{368}{288}\right) \\
& (A E)_{25}=987.49 \mathrm{~kJ}
\end{aligned}
$$

The available energy of asystemisgiven by 35 kg

$$
\begin{aligned}
(A \cdot E)_{35} & =35 \times 4.2 \int_{273+15}^{273+75}\left(1-\frac{273+15}{T}\right) d T \\
& =35 \times 4.2\left(308-288 \cdot \ln \frac{308}{288}\right) \\
(A \cdot E)_{35} & =97.461 \mathrm{~kJ}
\end{aligned}
$$

$(A E)_{35}$

$$
\begin{aligned}
5 & \sim(A E)_{25} \\
& =987.49-97.96 \\
& =890.03 \mathrm{~kJ}
\end{aligned}
$$

A system at 500 k recieves $7200 \mathrm{~kJ} / \mathrm{mim}$ from a source at look. The temperature of atmosphere in Book. Assuming that the temperatare of system and source remain constant during heat transfer find out :
(i) The entropy produced during heat transfer (ii) The decreases in available energy after heat transfer
i) Net change in entropy:-

$$
\begin{aligned}
& \text { source }=\frac{-Q}{T 1}=\frac{-7200}{1000}=-7.2 \mathrm{~kJ} / \mathrm{mink} . \\
& \text { system }=\frac{Q}{T 2}=\frac{7200}{500}=14.4 \mathrm{~kJ} / \mathrm{km} k \\
& \text { net change. in entropy }=-7.2+14.4=7.2 \mathrm{~kJ} / \mathrm{min}
\end{aligned}
$$

(ii) Decrease in available energy:-

$$
\begin{aligned}
&(A E)_{\text {at source }}=(1000-300) \times 1.2=5040 \mathrm{~kJ} \\
& \begin{aligned}
(A \cdot E)_{\text {System }} & =(500-300) \times 14.4=2880 \mathrm{~kJ} \\
\text { Decrease in A.E } & =5040-2880 \\
& =2160 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

wnit-10
properties of pure. substance
Defin of pure substance:- A pure substance is a system which is

1. Homogenius incomposition
2. Homogenius imchomical agrigation
3. In variable i m chemical agrigation

(i)

(ii)
phase change of a pare substance:

Let as consider 1 kg of liquid at temperature $20^{\circ} \mathrm{C}$ when the water is heated sbouly the temperature of liquid water becomes $100^{\circ} \mathrm{C}$ and is indicated by the line $1-2$. The volume increases 5 lightly when liquid attains $100^{\circ} \mathrm{C}$ if heating is contianed it undergoes a change m Phase represented by the lime $2-3$.

* When all the liquid have evaprated if theat is for that added the temperatu
vapour mereases and is represented by the lime $3-4$.
* If the heating takes place at 12 bar with an ital temperature of $20^{\circ} \mathrm{C}$ until the liquid water is converted into super heated el steam then curve 5-6-7-8 will represented the process.
A If heatimg is done at constant pressure of 225 bar it is represented by the curve 9-10 * The curve $12-13$ represents a constant pressure heating process when the pressure is greater than constant pressure. At this state the liquid water is directly converted in to super heated steam.

P-T diagram for a pure substance

The points representing the co-existimg of solid and vapour lime on the sublimation curve.

* Laid and vapour lime on the vapourisation care * Liquid and solid lime on the fusion curve.

The slopes of sublimation and vapourisation carves for all the substance are positive. The slope of the fusion curve may be positive or negative. The fusion curve of most substance have a positive slope water is on of the
if important Exceptions.
Triple pome:
It is the point of intersection o sublimation and vapourisation curves on $P-7$ diagram the triple point is represented by a point on P.T diagram it is a lime and an uV diagram it is a triangle
P.V.T -diagram - Isometric View:

All the equilibrium states lie on the surface of the body it may be seen that the triple appears as a lime in thees representation. The point $c p$ is called the critical point and how liquid phase exists at temperature above the isotherms through this port. The term evaporatil is maxims less at this situation Graphical represention of formation of steam?

Important terms relating steam formation:
2. Sensible heat of water (hf)

It is defied as the quantity of heat observed by 1 kg of water, when it is heated from $A^{\circ} \mathrm{C}$. Ft is called enthalpy of water.

It is counted from $0^{\circ} \mathrm{C}$ where sensible heat is taken as $0^{\circ} \mathrm{C}$. If 1 kg of water is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ the sensible heat added to it will $b \mathrm{e}$

$$
\begin{aligned}
& 4 .)(8(100-0)=418 \mathrm{~kJ} \\
& \mathrm{C}
\end{aligned}
$$

But if the water is at same $20^{\circ} \mathrm{C}$. Then the sensible heat added will be

$$
4 \cdot 18(100-20)=334 \cdot 4 k J
$$

2. Latent heat (Mfg)

It is the amount of heat reaciired to convert water at a given temperature and pressure in to steam at same pressure and temperature it is expressed by (hrs) arexd value is available m steam table.
3. Dryness fraction (x) :

The term dryness fraction is related with wet steam. It is defied as the ratio of the mass of actual dry steam to the mass of steam contimimg it. It is usually expressed by the symbol (x)

$$
\begin{aligned}
& x=\frac{m s}{m s+m \omega} \\
& x=\frac{m s}{m s t m \omega} \\
& m s=\text { mass of dry steam } \\
& m \omega=\text { mass of wet steam }
\end{aligned}
$$

Notein no steam can te completely dry unso crated / so all as it is in contact with water.
4. Total heat cor) Enthalpy of wet Stan It is defined as the quantity of required to convert kg of apter at $0^{\circ} \mathrm{C}$ in to wet steam at constant pressure. It is the sumof total heat of wafer and the latent heat and this call ed as enthalpy,

$$
h=h f+x \cdot h f g
$$

Super heated Steam: when steam is heated ofle becomes dry and saturated it is called super head d steam

$$
\begin{gathered}
h=h f+x h_{f g} \\
h=h f+h y+c p_{3}(p-\sqrt{8})
\end{gathered}
$$

- calculate the dry nessfraction? (equality of steam which has loskg of water in suspenactio with 50 ks of steam.

$$
x=\frac{m s}{m s+m l 0}=\frac{50}{50+1.5}=0.97
$$

A vessel havime a capacity of $0.05 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at temperature of $445^{\circ} \mathrm{C}$ the mass of hauid present is lokg find the following
i) The pressure
(if) The mass
(3) The specificvolunac
(U) The specific enthalpy
(5) The speciflcinterral energy
(i) $36.56 \mathrm{a}^{2}$
ii)

$$
\text { volume gliauid } \begin{aligned}
V f & =m f v f \\
& =10 \times 0.00124 \\
v f & =0.012 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\text { volume g vapour }=\sqrt[1 g]{g}=0.05-0.0124
$$

$$
\begin{aligned}
& m g g= \\
& \sum_{g} v g=0.0376 \mathrm{~m}^{3} \\
& m=\frac{0.0376}{0.054606}=0.68 \\
& m g
\end{aligned}
$$

$$
\begin{aligned}
& =10 \mathrm{to.} 68 \\
& m=10.68 \mathrm{~kg}
\end{aligned}
$$

iii) specific volume

$$
\begin{aligned}
& v=v f+v f g \\
& \dot{x}=\frac{0.68}{0.68+10}=0.063 \\
& v=0.00124+0.063 \times 0.05 \\
& v=0.0042 \mathrm{~cm} 31 \mathrm{ks}
\end{aligned}
$$

(i) $h=h e+x h f g$

$$
\begin{gathered}
=1061.6+0.063 \times 1790.0 \\
h=1171.22 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

$$
\begin{aligned}
& p=36.5 \text { bar } \\
& V_{f}=0.001240 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{vg}=0.054606 \mathrm{~m} 3 / \mathrm{kg} \\
& h f=1061.6 \mathrm{~kJ} / \mathrm{kg} \\
& \text { hfg }=1740.0 \mathrm{kol} \mathrm{~kg} \\
& \text { if }=2 \text {. } 7 \mathrm{ldq} 8 \text { kजlleg } \mathrm{k} \\
& s g=3.358 \text { kot } \mathrm{kgk}
\end{aligned}
$$

v)

$$
\begin{aligned}
& s=5 f+x S f g \\
& s=2.957 \text { skulk } g k
\end{aligned}
$$

(us)

$$
\begin{aligned}
& u=h-p v \\
& =1171 \cdot 22-\frac{36.5 \times 10^{5} \times 0.00424}{1000} \\
& u=1155.74 \mathrm{k} 51 \mathrm{~kg}
\end{aligned}
$$

Determine the amount of heat which should be supplied to 2 ks of water at $25^{\circ} \mathrm{C}$ to convert it into seam att soar and point 9 dry Given data

$$
\begin{aligned}
& m \omega=2 \mathrm{~kg} \\
& t_{w}=25^{\circ} \mathrm{f} \\
& p v, x=56 a \mathrm{r}, 0.96 a \mathrm{r} \\
& h f=640.1 \mathrm{ko} / \mathrm{kg} \\
& h f g=2.014 \mathrm{kJtg} \\
& h=h f+x \mathrm{hfg}=2536.76 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\text { sensible heat }=\text { mucpur }(25-0)
$$

$$
=1 \times 4 \cdot 18(25-0)
$$

$$
=104.5 \mathrm{~kJ}
$$

Quantity of heat supplied per $k g$

$$
\begin{aligned}
& 2536.76-104.5 \\
= & 2432.26 \mathrm{~kJ} \\
= & 2 \times 2432.26=4864.52 \mathrm{~kJ}
\end{aligned}
$$

wallet Dimoint of heat t would be required to produced 4 H 4 kg of steam at pressure of 6 bar and temperature of $250^{\circ} \mathrm{C}$ from water ot $30^{\circ} \mathrm{C}$ take Cp 2.12

6 bar and $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& t_{s}=158.8^{\circ} \mathrm{C} \\
& h_{f}=670.4 \mathrm{~kJ} / \mathrm{kg} \\
& h f g=2085.0 \mathrm{~kJ} / \mathrm{kS} \\
& \text { sup }=h f+h_{f} g+c P_{S}\left(T_{\text {sup }}-T \cdot S\right) \\
& =670.4+208500+2.2(250-158.8) \\
& h_{54 P}=2956.04 \mathrm{~kJ} \\
& 29.56 .04-12 \quad 5.4 \\
& =2830.64
\end{aligned}
$$

Total amount of heat required

$$
=44 \times 2830.64=12454.81 \mathrm{k}
$$

Find the specific volume, enthiopy and internal energy of wet steam at Mresurels 18 drayhess fraction

$$
x=0.85
$$

$$
\begin{aligned}
& \text { SP vol }=0.09,0099 \mathrm{~m} 3 / \mathrm{ks} \\
& h=25 \$ 0 \mathrm{~kJ} \mathrm{~kg} \\
& u=h-P V .2508 / \mathrm{kJ} 2220 \\
& =2510-\frac{18 \times 105 \times 009}{1000} \\
& u=2348 \mathrm{~kJ} / \mathrm{ks}
\end{aligned}
$$

$$
\begin{aligned}
& v=v f+x v f g \\
& h=h f+x h f g \\
& v=0.00168 \quad f g=0.109162 \mathrm{kl} \hat{\mathrm{~h}} / \mathrm{kg} \\
& h f=884.5 \quad \mathrm{hfg}=19103 \mathrm{~kg} / \mathrm{kg}
\end{aligned}
$$

4 Find the drayness fraction; specific vertu men ard internal energy of a steam at 7 Barr and ether $18 y \cdot 2550 \mathrm{~kg} / \mathrm{kg}$
Given data

$$
\begin{array}{ll}
\text { ven data } & h f=6971 \\
\text { Pressure }(P)=4 \text { bar } & \text { hf }=2064.9 \\
\text { Entholpy }(h)=2550 &
\end{array}
$$

$$
h=h f+x \cdot h f g
$$

$$
\begin{aligned}
& 2550=h f+x \cdot h f g \\
& 2.550=x+h f
\end{aligned}
$$

$$
\frac{2550}{h f s}=x \text { th if }
$$

$$
\begin{aligned}
x & =\frac{2550}{h f^{0}}-h f \\
x & =\frac{2550}{2064.9}-697.1 \\
x & =0.89
\end{aligned}
$$

$$
v=u_{f}+x \cdot v f S
$$

$$
\text { VAS- } \text { IFS }-0.27268-0.001108
$$

$$
V F S=0.27152
$$

$$
v=0.001108+(0.89) 0.27152
$$

$$
v=0.24
$$

$$
d r=h-P U
$$

$$
u=2550-\left(7 \times \frac{105 \times 0.24}{1000}\right)
$$

-168

$$
u=238 \frac{2 \mathrm{~kJ}}{\mathrm{~kg}}
$$

unit -4
chapter -2
noocwells relation
W: H, GiF
Givps free energy function : It is defined as the difference bra the enthlophy and the product of temperatiore and entrophy

$$
G=4-T S
$$

Herm holt z 's free cnersy function: - It is defined as the difference bow the internal energy and the product of temperature and entrophy
Differential relation for $C_{y} H, G, F$ with the help of first and second law of therm dynamic

$$
\begin{aligned}
& \delta a-\delta u=d u \\
& \frac{\delta Q}{T}=\frac{P d v}{T}=\frac{d u}{T} \\
& d s=\frac{P d v}{T}+\frac{d u}{T} \\
& T d s=P d u+d u \\
& d u=T d S T P d u \rightarrow Q
\end{aligned}
$$

$$
T d s=p d u+d u
$$

$$
\forall=u+P v
$$

$$
=p d v+d(1+p u)
$$

$=\nabla d u+d H-D A V-v d P$

$$
\begin{align*}
& T d s=d H-v d P \\
& d t=T d S+v d P-(2) \tag{2}\\
& G=H-T S \\
& d G=d H-T d S-S d T \\
& =T d S+v d P-T d S-S d T \\
& d G=V d P-S d T \rightarrow \text { (3) }
\end{align*}
$$

$$
\begin{align*}
F & =u-T S \\
d F & =d u-T d S-S d T \\
& =T A S-P d v-T d S-S d T \\
d F & =-(P d u+S d T)-\rightarrow(4) \tag{4}
\end{align*}
$$

prom eq (1) we can say U is a function of S, V
And differentaikh paratillay.

$$
: d u=\left(\frac{\partial u}{\partial S}\right)_{v} d S+\left(\frac{\partial u}{\partial v}\right)_{S} d v
$$

But $d u=T d S-P d v$

$$
\left.T d s-p d v=C \frac{\partial u}{\partial s}\right) v \stackrel{d s}{T}+C \frac{\partial u}{\partial v} \underset{s}{\frac{d}{s}}=
$$

on camparims $d s$ and $d V$ terms.

$$
\left(\frac{\partial u}{\partial s}\right)_{v}=T\left(\frac{\partial u}{\partial v}\right)_{s}=-p-\partial(5)
$$

Fromeq (3) H is a function of S SIP Applying partiall devivatears

$$
\begin{aligned}
& H=f(S \mathbb{P}) \\
& d H=\left(\frac{\partial H}{\partial S}\right)_{p} d s+\left(\frac{\partial H}{\partial P}\right)_{S} d P \\
& d H=T d S+V d P \\
& T d S+V d P=\left(\frac{\partial H}{\partial S}\right)_{p} d S+\left(\frac{\partial H}{\partial P}\right)_{S} d p \\
& \quad\left(\frac{\partial H}{\partial S}\right)_{p}=T\left(\frac{\partial H}{\partial P}\right)_{S}=U \rightarrow \theta \rightarrow
\end{aligned}
$$

Fromear, B is a function of PIT Applyms partial derlvatives

$$
\begin{aligned}
& G=(p T) \\
& d G=\left(\frac{\partial G}{\partial P}\right) T d p+\left(\frac{\partial G}{\partial T}\right)_{p} d T \\
& d G=V d p-S d T \\
& V d p-S a T=\left[\frac{\partial G}{\partial p}\right]_{T} d p+\left[\frac{\partial G}{\partial T}\right]_{p} d T
\end{aligned}
$$

$$
\left[\frac{\partial G}{\partial P}\right]_{T}=V\left[\frac{\partial G}{\partial T}\right]_{P}=-S-\text { (1) }
$$

Fronea@ प is is a function of V, T Applimg partial devivatives

$$
\begin{aligned}
& F=(v, T) \\
& d F=\left(\frac{\partial F}{\partial v}\right) T d v+\left(\frac{\partial F}{\partial T}\right)_{V} \cdot d T
\end{aligned}
$$

$$
\begin{aligned}
& \text { But } d F=-(p d v+S d T) \\
& -(p d v+s a T)=\left(\frac{\partial F}{\partial v}\right)_{T} d v+\left[\frac{\partial F}{\partial T}\right)_{v} d T \\
& \left(\frac{\partial F}{\partial v}\right]_{T}=-p\left(\frac{\partial F}{\partial T}\right)=-S \rightarrow(8)
\end{aligned}
$$

comparing $6,7,8$.

$$
\begin{aligned}
& \begin{array}{l}
p=\frac{\partial t}{\partial s} \quad-p=\left(\frac{\partial y}{\partial s}\right)= \\
\left(\frac{(\partial \sigma}{\partial f}\right) \quad\left\{\begin{array}{l}
T=\left(\frac{\partial y}{\partial s}\right) \\
T=
\end{array} \quad V\right.
\end{array} \\
& \left\{\begin{array}{c}
v=\left(\frac{\partial H}{\partial P}\right) s \\
v=\left(\frac{\partial G}{\partial P}\right)^{\sigma}
\end{array}\right\}^{v=\left(\frac{\partial a}{\partial t}\right]_{P}} \\
& \left(\frac{\partial F}{\partial V}\right)_{T}=P
\end{aligned}
$$

Fromear (s)

$$
\left(\frac{\partial u}{\partial s}\right) \Rightarrow T \quad\left(\frac{\partial u}{\partial v}\right) s=-p
$$

bifferentaing eq(s) 5 's first term with respen to V treating $\mathrm{s}^{\prime \prime} \mathrm{s}$ constart and second term with respocts to streating or constant

$$
\begin{gathered}
\left.\frac{\partial \partial^{2} u}{\partial v \partial s}=\left(\frac{\partial T}{\partial v}\right)_{S} \notin \frac{\partial^{2} u}{\partial v \partial S}=-\frac{(\partial P}{\partial S}\right) \\
\left(\frac{\partial T}{\partial v}\right)_{s}=-\left(\frac{\partial P}{\partial S}\right)^{2} \rightarrow \Phi
\end{gathered}
$$

सromea (6)
Eq (9) is prodias fromewells relation 4 :
Fromeq (6)

$$
\left(\frac{\partial H}{\partial S}\right)_{p}=T \cdot \varepsilon\left(\frac{\partial H}{\partial P}\right)_{S}=V
$$

Differentmo. First term with respect to P. treating S as constant and second term withrespect to s. preatmg peonstiant

$$
\begin{align*}
& \frac{\partial^{2} H}{\partial p \partial S}=\left(\frac{\partial T}{\partial P}\right)_{S} \& \frac{\partial^{2} H}{\partial p \partial S}=\left(\frac{\partial V}{\partial S}\right)_{p} \\
& \left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial U}{\partial S}\right) p \rightarrow \text { (B) } \tag{b}
\end{align*}
$$

caultos n on as maxcuells relation from H
Fromea 6

$$
\begin{aligned}
& \text { omeqG } \\
& \left(\frac{\partial G}{\partial P}\right) T=V\left(\frac{\partial G}{\partial T}\right)_{p}=-5
\end{aligned}
$$

Different $m s$ first torm with respect to ir treating P as constant and second term with respects to p treaths Tas constant

$$
\begin{align*}
& \frac{\partial Z G}{\partial T \partial P}=\left(\frac{\partial V}{\partial T}\right)_{P}{ }^{2} q_{1} \cdot \frac{\partial^{2} Z}{\partial T \partial P}=\left(\frac{-\partial S}{\partial P}\right)_{T} \\
& \left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial S}{\partial P}\right)_{T} \rightarrow(\mathbb{D}) \tag{1D}
\end{align*}
$$

Eq (ii) is known as maxwells relation from 9 promeal (8)

$$
\left.\left(\frac{\partial F}{\partial V}\right)_{T}=-P \& \frac{C \partial F}{\partial T}\right)_{V}=-S
$$

Differentims V first term with respect to T treatmgVas constant and second term with respect to v treatmg pas constant

$$
\begin{aligned}
& \frac{\partial 2 F}{\partial V \partial T}=-\left(\frac{\partial P}{\partial T}\right) \cdot \xi \frac{\partial^{2} F}{\partial T \partial V}=-\left(\frac{\partial S}{\partial V}\right) T \\
& \left(\frac{\partial P}{\partial T}\right)_{\text {cq 12 }}=-\left(\frac{\partial S}{\partial V}\right) \rightarrow \text { (12 }
\end{aligned}
$$

The above is the maxcuells relation from F

$$
\pi W
$$

various forms of TDS equation
let usme as sa foanction of T, V)

$$
\begin{aligned}
& d s=\left(\frac{\partial S}{\partial T}\right) N d T+\left(\frac{\partial S}{\partial V}\right) T d V \\
& \left.\left.C \frac{\partial S}{\partial T}\right\rangle=\frac{C V}{T}\left(\frac{\partial S}{\partial V}\right)=\frac{(\partial P}{\partial T}\right) N \\
& d s=\frac{c V}{T} \cdot d T+\left(\frac{\partial P}{\partial T}\right) d v T
\end{aligned}
$$

$$
\begin{aligned}
& \text { TR. } \\
& \text { Ru }
\end{aligned}
$$

$$
T_{d s}=C V d T+\left(\frac{\partial P}{\partial T}\right) d V T V
$$

The above culatation aS FIrSt IDS equation

$$
\begin{aligned}
& S=f(T, P) \\
& d S=\left(\frac{\partial S}{\partial T}\right)_{P} d S+\left(\frac{\partial S}{\partial P}\right)_{T} d P \\
& \left(\frac{\partial S}{\partial T}\right)_{P}=\frac{C P}{T}\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P} \\
& d S=\frac{C P}{T} d T-\left(\frac{\partial V}{\partial T}\right)_{P} d P \\
& T d S=C P d T-\left(\frac{\partial V}{\partial T}\right)_{P} d P T \\
& \text { The above earewas seond T.D.S Qaueta }
\end{aligned}
$$

$$
\begin{aligned}
& \delta=f(D, V) \\
& \partial S=\left(\frac{\partial S}{\partial p}\right) d p+\left(\frac{\partial S}{\partial v}\right)_{p} d v \\
& \left.\frac{C \partial \dot{S}}{\partial P}\right)_{V}\left(\frac{\partial P}{\partial T}\right)^{A \sin c}\left(\frac{\partial T}{\partial S}\right) V=1 \\
& \left(\frac{\partial S}{\partial P}\right)_{v}=\left(\frac{\partial T}{\partial P}\right)_{v}\left(\frac{\partial S}{\partial T}\right)_{v} \\
& \left(\frac{\partial S}{\partial P}\right)_{v}=\left(\frac{\partial T}{\partial P}\right)_{V} \frac{C v}{\tau}-\text { (D) } \\
& \text { TLU } \\
& \left(\frac{\partial S}{\partial V}\right)_{p}\left(\frac{\partial V}{\partial T}\right)_{p} \cdot\left(\frac{\partial T}{\partial S}\right)=1 \\
& \left.\frac{\partial f}{\partial V}\right)_{p}=\left(\frac{\partial T}{\partial V}\right)_{p}\left(\frac{\partial s}{\partial T}\right)_{p} \\
& \left(\frac{\partial S}{\partial V}\right)_{P}=\left(\frac{\partial T}{\partial V}\right)_{P} \frac{Q}{T}-\text { (2) }
\end{aligned}
$$

Subflutims 1 and (2) TDS

$$
\begin{align*}
& d s=\frac{c v}{T}\left(\frac{\partial T}{\partial p}\right) d p+\frac{C p}{\tau}\left(\frac{\partial T}{\partial V}\right) p d V \\
& T d s=C v\left(\frac{\partial T}{\partial p}\right) \dot{V} d p+C p\left(\frac{\partial T}{\partial V}\right) p \tag{3}
\end{align*}
$$

The above eus has the Third TDS equation.

Unit-V
chapter-2
Gas power cycles
2.) carnot cycle
2) Ittrocyde
3.) Diesel cycle
4) Duel cu de

57 compreson of cycles
orth cycle : -

The atsto cycle is named after inventor D. An alto in the year 1876 . It is a theoretical cycle on which the present date petrole ensile, gas engme and errocngime work

$$
\begin{aligned}
& Q A=Q_{2}-3=C_{v}\left(T_{3}-T_{2}\right) \\
& Q R=Q_{4}-1=\left(v\left(T_{4}-T_{1}\right)\right. \\
& W \cdot D=Q A-Q R \\
& C_{1} \cdot D=Q_{v}\left(T_{3}-T_{2}\right)-C_{1}\left(T_{4}-T_{1}\right) \\
& T_{t h}=\frac{\cos ^{D}}{H \cdot S}=\frac{C_{v}\left(T_{3}-T_{2}\right)-C_{v}\left(T_{4}-T_{4}\right)}{Q_{v}\left(T_{3}-T_{2}\right)}=1-\frac{T_{4}-T_{7}}{\left(T_{3}-T_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& y \frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right) \frac{r^{\frac{1}{r}}}{\frac{1}{v_{2}}}\left(\frac{v_{1}}{v_{2}}\right)^{\sqrt{2}} \\
& \frac{T_{2}}{r_{1}}=\left(\frac{m_{2}}{n_{1}}\right)^{\frac{x}{2}=0}\left(\frac{v_{1}}{v_{1}}\right)^{\prime} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{v-1} \\
& \frac{v_{1}}{v_{2}}=r \text { (combression ratio) } \\
& T_{2}=T_{1}(r) \gamma-1 \\
& \frac{T_{3}}{T_{4}}=\left(\frac{v 4}{v_{3}}\right) r-1 \\
& \frac{v y}{v_{3}}=r \text { (Expension vatio) } \\
& T_{3}=T_{4}(\pi)^{V-1} \\
& \eta_{i h}=\frac{T_{u}-T_{1}}{T_{y} r^{\gamma-1}-T_{1} r^{\gamma-1}} \\
& =1-\frac{1}{\text { कोन }} \frac{T y-T}{T y}+T_{1} \\
& \pi_{t h}=1-\frac{1}{\text { sir-1 }} \\
& \text { MEP }=\frac{\omega \cdot D}{v_{1}-v_{2}} \\
& M E P^{a}=\frac{C V_{(}\left(T_{3}-T_{2}\right)-C V\left(T_{4}-T_{1}\right)}{V_{1}-V_{2}} \\
& v_{1}-v_{2}=v_{1}-\frac{v_{1}}{v_{1}}\left(\frac{v_{1}}{v_{2}}=r\right) \\
& =V_{1}\left(1-\frac{1}{r}\right) \\
& V_{x}-V_{2}=\frac{R \tau_{1}}{P_{1}}\left(\frac{r-1}{r}\right) \\
& M E_{P}=\frac{C V\left(T_{3}-T_{2}\right)-C V\left(T_{4}-T_{1}\right.}{} \\
& \text { PMI }=71 \\
& V_{1}=\frac{R 71}{P} \\
& \frac{p \pi}{p l}\left(\frac{r-1}{\Omega}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C P-C V=R \\
& \frac{C P}{C V}=Y \\
& C P=C \sim r \\
& \text { CV } V-C V=R \\
& C V(V-1)=R \\
& c_{V}=\frac{R}{\gamma-1} \\
& =\frac{1}{r-1} \times \frac{P_{1}}{T 1} \times \frac{r}{\frac{r}{r-1}}\left[\left(T_{3}-T_{2}\right)-\left(T_{4}-T_{1}\right)\right] \\
& 1-2 \\
& \frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{V_{2}}\right)^{r-1} \\
& T_{2}=T_{1}(r)^{r-1} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{-r^{-1}} \\
& 2-3 \\
& \frac{P_{2} v_{2}}{T 2}=\frac{P_{3 i} v_{3}}{T_{3}} \\
& T_{2}=T(r)^{r-1} \\
& T_{3}=\frac{P_{3}}{P_{2}} \times T_{2} \\
& { }^{2}=3 \quad \frac{P_{22} T_{2}}{T_{2}}=\frac{P_{3} V / 2}{T_{3}} \\
& T_{3}=2 p \times T_{2} \\
& T_{3}=\frac{p 3}{p^{2}} \times \sqrt{2} \\
& \begin{array}{l}
T_{3}=2 p \times T z \\
T_{3}=2 p \times T i r^{r-1}
\end{array} \\
& \frac{13}{13}=2 p \times \text { Th rr } r^{r-1} \\
& \frac{T_{4}}{T_{3}}=\left(\frac{v_{3}}{v_{4}}\right)^{v-1} \text { ज्1 } \frac{T_{4}}{T_{3}}=\left(\frac{v_{3}}{v_{4}}\right)^{v-1} \\
& \frac{T_{y}}{T_{3}}=\left(\frac{1}{5}\right)^{\gamma-1} \\
& \frac{T 4}{T 3}=(9 i)^{r-1} \\
& \begin{array}{l}
T_{4}=T_{3} \\
=2 p T^{-1}
\end{array} \\
& T_{u}=T_{3}(5)^{r-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { vuader }
\end{aligned}
$$

$$
\text { MEP }=\frac{p_{1} r(2 p-1)(o r-1)}{(r-1)(r-1)}
$$

Diesel cyclé (constant pressure exde)

The excle isnamed as after inventer roudoliff disel im 1893 who diviced this cycle for compresson, ignesion, ensimes

$$
\begin{aligned}
Q_{A} & =Q\left(T_{3}-T_{2}\right) \\
Q R & =C V\left(T_{4}-T_{1}\right) \\
\eta_{+h} & =\frac{\omega \cdot D}{H \cdot S}=\frac{C P\left(T_{3}-T_{2}\right)-C\left(T_{4}-T_{1}\right)}{C P\left(T_{3}-T_{2}\right)} \\
\eta_{\text {th }} & =1-\frac{T_{4}-T_{1}}{V\left(T_{3}-T_{2}\right)}
\end{aligned}
$$

(c)

$$
\begin{aligned}
r & =\frac{v_{1}}{v^{2}}=\text { compresatio } \\
r & =\frac{v_{y}}{v_{3}}=\frac{v_{1}}{3}=\text { Expratio }
\end{aligned}
$$

$$
\begin{aligned}
1-2 \quad \frac{T_{2}}{T_{1}} & =\left(\frac{v_{1}}{V_{2}}\right)^{r-1} \\
T_{2} & =T_{1}(r)^{\gamma-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2-3 } \frac{p_{2} v_{2}}{T_{2}}=\frac{p_{2} v_{3}}{T_{3}} \\
& T_{3}=\frac{N_{3}}{v^{2}} \times T_{2} \\
& \frac{v_{3}}{v^{2}}=\alpha_{c} \text { (cutoffrato) }
\end{aligned}
$$

$$
\begin{aligned}
& T_{3}=2 c \times T_{2} \\
& T_{13}=2 c \times T_{1}, n^{\gamma-1} \\
& T_{4}=T_{8}\left(\frac{V_{3}}{V_{4}}\right)^{\gamma-1} \\
& =T_{3}\left(\frac{v_{3}}{v_{2}} \times \frac{v_{2}}{v_{4}}\right)^{v_{1}} \\
& =13\left(c_{c} \times \frac{1}{r}\right)^{p-1} \sqrt{v_{0}}=v \\
& =2 c \times \text { Tiss }^{r-1}\left(2 c^{r-1} \times \frac{1}{\theta^{r-1}}\right) \\
& \pi_{1}=\alpha_{c}{ }^{\gamma} \times T_{1} \\
& \eta_{\pi_{h}}=1-\frac{1}{r} \frac{\left(T_{4}-T_{1}\right)}{\left(T_{3}-T_{2}\right)} \\
& =1-\frac{1}{r} \frac{\left(2 c^{r} T_{1}-\pi\right)}{\left.2 c T_{1}\right)^{\gamma-1}-\pi r^{r}-1} \\
& =1-\frac{1}{v} \frac{\left(2 c^{2}-1\right)}{0^{r-1}(2 c-1)} \\
& =1-\frac{1}{\operatorname{Nirl}^{r-1}} \cdot \frac{\left(2 c^{2}-1\right)}{\gamma(2 c-1)} \\
& \text { MEP }=\frac{\text { work Dome }}{\text { Displacemen volume }} \\
& m_{E P}=\frac{\left.\operatorname{CP}\left(T_{3}-T_{2}\right)-\mathrm{CVCT}_{4}-T_{1}\right)}{V_{1}-V_{2}} \\
& v_{1}-v_{2}=v_{1}\left(1-\frac{v_{2}}{v_{1}}\right) \\
& =m\left(1-\frac{1}{9}\right) \\
& V_{1}-v_{2}=V_{1}\left(\frac{r-1}{r}\right) \\
& P(Y)=R T I
\end{aligned}
$$

$$
\begin{aligned}
& \because V_{1}=\frac{R T 1}{P_{1}} \\
& v_{1}-v_{2}=\frac{R_{1}}{P_{1}}\left(\frac{r-1}{r}\right) \\
& v_{1}-v_{2}=\frac{C v(v-1) \times T 1}{p_{1}}\left(\frac{\theta}{\infty}-1\right) \\
& r R p=\frac{\omega \cdot D}{Q_{1}-v_{2}} \\
& m_{E p}=\frac{C_{p}\left(T_{3}-T_{2}\right)-C V\left(T_{4}-T_{1}\right)}{\frac{C V(V-1)}{p 1} \times T_{1}\left(\frac{r-1}{r}\right)} \\
& v_{1}\left(1-\frac{v_{2}}{v_{1}}\right. \\
& 0,\left(1-\frac{1}{A}\right) \\
& \left.\operatorname{map}=\frac{P_{1} r}{(r-1)(r-1)}\left[v r^{r-1} Q c-1\right)-\left(Q c^{r-1}\right)\right]
\end{aligned}
$$

Duel combustion cycle (limited pressureycic)

$$
\begin{aligned}
& \left.Q A=C V T_{3}-T_{2}\right)+Q\left(T_{4}-T_{3}\right) \\
& \begin{aligned}
Q R & =Q_{V}\left(T_{5}-T_{1}\right) \\
\eta_{T h} & =\frac{Q_{1} D}{H \cdot S}
\end{aligned}=\frac{C_{V}\left(T_{3}-T_{2}\right)+C P\left(T_{1}-T_{3}\right)-C V\left(T_{5}-T_{1}\right)}{C_{V}\left(T_{3}-T_{2}\right)+C P\left(T_{4}-T_{3}\right)} \\
& \\
& =1-\frac{T_{5}-T_{1}}{\left(T_{3}-T_{2}\right)+V\left(T_{4}-T_{3}\right)}
\end{aligned}
$$

Take $f P=\frac{P_{3}}{P^{2}}$
Catofuatio $a_{c}=\frac{v_{4}}{v_{3}}=\frac{v_{4}}{v_{2}}$

$$
\begin{aligned}
& \theta 1=\frac{v_{1}}{v_{2}} \\
& r^{-2} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{V_{2}}\right)^{v-1} \\
& T_{2}\left.=T_{1} g\right)^{V-1} \\
& \frac{P_{2} v /}{T_{2}}=\frac{P_{3} v_{3}}{T_{3}} \\
& T_{3}=T_{2} \frac{P_{3}}{P_{2}} \\
&=T_{2} q_{p} \\
& T_{3}=T_{1} r^{r-1} a_{p}
\end{aligned}
$$

$3-4$

$$
\begin{aligned}
& \frac{p_{3} v_{3}}{T 3}=\frac{P_{4} v_{4}}{T 4} \\
& r_{4}=T_{3} \times \frac{v_{4}}{v_{3}} \\
& =73 \times \frac{v y}{v z} \\
& T_{4}=T_{1} r^{r-1} a p a c \\
& \frac{T_{5}}{T_{4}}=\left(\frac{v_{4}}{v_{5}}\right)^{\sqrt{r-1}} \\
& =\left(\frac{v_{4}}{V_{2}}+\frac{v_{2}}{v_{5}}\right)^{v-1} \\
& =\left(\operatorname{acx} \frac{v_{2}}{v_{1}}\right)^{v^{-1}} \\
& \frac{T_{5}}{14}=a_{c}^{r-1} \times \frac{1}{r^{r}-1} \\
& T 5=\pi 1)^{\sqrt{4}} a_{0} a_{c} a_{c} \sqrt{-1} \frac{1}{x^{1-1}} \\
& T 5=\pi 9 p a d
\end{aligned}
$$

Subsths the values of $T_{1}, T_{2} T T_{3}$,, 4 and T_{5} expires ion of thermal efficiency

$$
\left.\eta_{n}=1-\frac{1}{v^{r}-1} \frac{19 p a d-1}{(a p-v)+\sqrt{a p}(a c-1)}\right]
$$

$$
\left.\begin{array}{rl}
\text { MED } & =\frac{\omega D}{V_{1}-\sqrt[v]{2}} \\
& =\frac{p_{1} r}{(r-1)(\gamma-1)}\left[r^{r-1}(a p-1)+\sqrt{a p}(a c-1)\right. \\
-a p\left(a c^{\gamma}-1\right)
\end{array}\right]
$$

Comparisson of otto; disel and duel oydes The three cycle compared on the basis of eitgther

1) the same compreshsion ratio
2) Same pressure and temp perafure
3) For same commesh sion and heatratio

Pisure shows the compression of otto, disel and duel cycles font the same comprehsion rat and heat resection Hear $1,2,6,5$ represents auto cycle $1,2,7,5$ represents desire cycle $1,2,44$ represent Duel aude

$$
\Lambda_{\text {th }}=1-\frac{Q g}{Q A}
$$

Area under Is diagram slues the heat transfer for heat rejected hisher the QA hishor is the adele efficiency. In the $\#-5$ diagram area under 2,6 represents QA for out to cydC area under 27 representSQA for disel aude underarea $2,3,4$ represent 9 AA for duel cycle Therefore for same comprhasion ratio for heat ratio Motto $>$ Manuel $>\mathcal{Y}^{2}$. Diesel
pressure and temperature
For the same meximure compression

A compreshion of otto, diseland duel air stantart cycle for the same pressure $(P 7=P Y)$ and for the same temperature (T_{4}) In given figure
$1,6,4,5,1$ represents auto ottocucle $1,2,3,4,5,1$ represents duel addle $1,7,4,5,1$ represents disel cycle the are a under 7,4 represents heat added QA dorms the disel cycle. Area under $2,3,4$ represents the heat added QA dorms the duel cycle under the area 6,4 repress cents the heat added durms otto cyde

$$
\begin{aligned}
& \text { cents the heat added } \\
& \text { Diesel }>\text { Moue }
\end{aligned} \text { Motto }
$$

1 Fideal gas:. An idealgasisdefmed as gas having no fores antermolealar attraction the gases Which follows the gas laces at all ranges of pressure and temperature are consider as ideal gases
Real gas:- No gases present in nature are real gases this follow the low pressure condition and hish temperature condition are both this is because the forces of attraction b/co molecuels leend to be very small at reduced pressures at evalated temperatures

The equation gas state:-

$$
\begin{aligned}
& P V=R T \\
& \frac{P V}{T}=C
\end{aligned}
$$

Boyle lac: - volume of given mass of a perfect gas varies mversally has absolute pressure when temperature is constant.

$$
\begin{aligned}
& V_{2}\left(\frac{1}{p}\right)_{T} \\
& P H_{1}=p_{2} v_{2}
\end{aligned}
$$

Chores law:- If any gas isheated at constant pressure it's volume changes directly has it's obsulute temperature v is d direct y T

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

To derive an equation the state of gas (1) From RV diagram process $1-2$ constant pressure (2) From process $2-2$ constant tomeparature

$$
1-2^{\prime} \frac{v_{1}}{T_{1}}=\frac{v_{2}^{\prime}}{1_{2}^{\prime}}
$$

since

$$
\begin{aligned}
& T_{2}^{\prime}=\frac{T_{2}}{T_{2}} \\
& \frac{v_{1}}{T_{1}}=\frac{v_{2}^{\prime}}{T_{2}} \rightarrow(1) \\
& r_{2}^{\prime} v_{2}^{\prime}=P_{2} v_{2} \\
& P_{1}^{\prime} v_{2}^{\prime}=P_{2} v_{2} \\
& v_{2} l=\frac{p_{2} v_{2}}{P_{1}} \rightarrow \text { (3) }
\end{aligned}
$$

$z-2^{1}$
substims the value (2) and (1)

$$
\begin{aligned}
& \frac{V_{1}}{V_{1}}=\frac{P_{2} V_{2}}{P_{1} T_{2}} \\
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \frac{P V}{T}=\text { constant }
\end{aligned}
$$

$\frac{P V}{T}=R$ where R is called as specific gas

The above is called as equation of the state constant

Alagadro's law:- A more of a substances
has mass equal to the molecular aright of a Substance
Igram mole of oxygen molecular has mass of
1 kg mole of oxygen has mass of 32 kg ,
32 grams
1 kg of rote of nitrogen has mass of 28 kg
Avagadro law states that the volume a gram mole of all gases at a pressure of 750 milimete of Hg and temperature of $O^{\circ} \mathrm{C}$ is the
same and is equal to 22.4 litters

$$
\text { IFgmole }=22.4 \mathrm{~m}^{3}
$$

Dalton's law of partial pressures:Let us a mogime a homogenous mixture an inert ideal gases at temperature ty pressure P volume V
Let us suppose there are n_{1} moles of gas A_{1}, M_{2} moles of 9 as.
A_{2} and up to ne mole of gas A_{3} since there is no chemical reaction the mixture is in the state of equilibrium

$$
\begin{gathered}
P_{V}=\left(A_{1}+n_{2}+\ldots+n c\right) \bar{R} T \\
\bar{R}=83143 k J / k 9 \mathrm{molk} \\
P=\frac{n_{1} \bar{R} T}{V}+\frac{n_{2} \bar{R} T}{V}+\frac{n_{c} \bar{R} T}{V} \\
P_{1}=\frac{n / \bar{R} T}{V} \quad P_{2}=\frac{n_{2} \bar{R} T}{V} \quad P C=\frac{n_{C} \bar{R} T}{V} \\
P=P_{1}+P_{2}+\cdots P_{C}
\end{gathered}
$$

Buttons kw of pontlur Ressare
let us mnagme a ahom.

Wis:

